Chen Jing, Edwards Aurélie, Layton Anita T
Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F537-48. doi: 10.1152/ajprenal.90497.2008. Epub 2009 Apr 29.
we extended the region-based mathematical model of the urine-concentrating mechanism in the rat outer medulla (OM) developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005) to examine the impact of the complex structural organization of the OM on O(2) transport and distribution. In the present study, we investigated the sensitivity of predicted Po(2) profiles to several parameters that characterize the degree of OM regionalization, boundary conditions, structural dimensions, transmural transport properties, and relative positions and distributions of tubules and vessels. Our results suggest that the fraction of O(2) supplied to descending vasa recta (DVR) that reaches the inner medulla, i.e., a measure of the axial Po(2) gradient in the OM, is insensitive to parameter variations as a result of the sequestration of long DVR in the vascular bundles. In contrast, O(2) distribution among the regions surrounding the vascular core strongly depends on the radial positions of medullary thick ascending limbs (mTALs) relative to the vascular core, the degree of regionalization, and the distribution of short DVR along the corticomedullary axis. Moreover, if it is assumed that the mTAL active Na(+) transport rate decreases when mTAL Po(2) falls below a critical level, O(2) availability to mTALs has a significant impact on the concentrating capability of the model OM. The model also predicts that when the OM undergoes hypertrophy, its concentrating capability increases significantly only when anaerobic metabolism supports a substantial fraction of the mTAL active Na(+) transport and is otherwise critically reduced by low interstitial and mTAL luminal Po(2) in a hypertrophied OM.
我们扩展了Layton和Layton(《美国生理学杂志:肾脏生理学》289:F1346 - F1366,2005)建立的大鼠外髓质(OM)尿液浓缩机制的基于区域的数学模型,以研究OM复杂结构组织对O₂转运和分布的影响。在本研究中,我们研究了预测的Po₂分布对几个参数的敏感性,这些参数表征了OM区域化程度、边界条件、结构尺寸、跨膜转运特性以及肾小管和血管的相对位置与分布。我们的结果表明,供应给降支直小血管(DVR)并到达内髓质的O₂比例,即OM中轴向Po₂梯度的一种度量,由于长DVR在血管束中的隔离,对参数变化不敏感。相比之下,血管核心周围区域之间的O₂分布强烈依赖于髓质厚升支(mTALs)相对于血管核心的径向位置、区域化程度以及短DVR沿皮质 - 髓质轴的分布。此外,如果假设当mTAL Po₂降至临界水平以下时mTAL主动Na⁺转运速率降低,那么mTAL的O₂可用性对模型OM的浓缩能力有显著影响。该模型还预测,当OM发生肥大时,只有在无氧代谢支持相当一部分mTAL主动Na⁺转运时,其浓缩能力才会显著增加,否则在肥大的OM中,由于间质和mTAL管腔Po₂较低,其浓缩能力会严重降低。