Suppr超能文献

A20 去泛素化酶活性负调控 LMP1 对 IRF7 的激活。

The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7.

机构信息

Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA.

出版信息

J Virol. 2010 Jun;84(12):6130-8. doi: 10.1128/JVI.00364-10. Epub 2010 Apr 14.

Abstract

A20 possesses both deubiquitinase (DUB) and ubiquitin E3 ligase activities that are required for termination of Toll-like receptor (TLR) signaling leading to NF-kappaB activation and for blockage of tumor necrosis factor (TNF)-induced cytotoxicity and apoptosis. A20 is induced by the Epstein-Barr virus (EBV) oncoprotein LMP1. However, its dual ubiquitin-editing activities have not been investigated in the context of either EBV infection or IRF7 responses. Both A20 and IRF7 have oncogenic properties. We have recently shown that LMP1 activates IRF7 through K63-linked ubiquitination which requires RIP1 and TRAF6, but how this ubiquitination event is regulated has not been studied. Here, we show that A20 negatively regulates IRF7 transcriptional activity induced by LMP1. Deletion or mutation of A20 C-terminal zinc finger motifs had no effect on the inhibition of IRF7 activity, whereas DUB-deficient truncation or point mutation ablated the ability of A20 to inhibit IRF7. Correspondingly, the A20 N-terminal DUB domain, but not the C-terminal E3 ligase domain, interacts physically with IRF7. Transient expression of A20 reduced K63-linked ubiquitination of IRF7 in vivo, but an in vitro deubiquitination assay with purified constituents shows that IRF7 did not act as a substrate for A20 DUB activity. Moreover, A20 interacts with IRF7 endogenously in latently EBV-infected type 3 Raji cells, in which expression of both A20 and IRF7 is constitutively induced by the considerable level of endogenous LMP1. Knockdown of endogenous A20 in Raji cells by expression of A20 short hairpin RNA (shRNA) vectors increases endogenous IRF7 activity and ubiquitination, as well as the protein level of LMP1, a target of IRF7. Thus, A20 negatively regulates LMP1-stimulated IRF7 ubiquitination and activity in EBV latency, and its DUB activity is indispensable for this function. Finally, we discussed the regulation and function of IRFs in EBV latency.

摘要

A20 具有去泛素化酶 (DUB) 和泛素 E3 连接酶活性,这对于终止 Toll 样受体 (TLR) 信号转导、NF-κB 激活以及阻断肿瘤坏死因子 (TNF) 诱导的细胞毒性和细胞凋亡是必需的。A20 是由 Epstein-Barr 病毒 (EBV) 癌蛋白 LMP1 诱导的。然而,其双重泛素编辑活性在 EBV 感染或 IRF7 反应的背景下尚未得到研究。A20 和 IRF7 都具有致癌特性。我们最近表明,LMP1 通过 K63 连接的泛素化激活 IRF7,这需要 RIP1 和 TRAF6,但这种泛素化事件如何被调节尚未研究。在这里,我们表明 A20 负调控 LMP1 诱导的 IRF7 转录活性。A20 C 端锌指结构域缺失或突变对 IRF7 活性的抑制没有影响,而 DUB 缺陷截断或点突变则消除了 A20 抑制 IRF7 的能力。相应地,A20 的 N 端 DUB 结构域,但不是 C 端 E3 连接酶结构域,与 IRF7 发生物理相互作用。瞬时表达 A20 减少了体内 IRF7 的 K63 连接泛素化,但用纯化成分进行的体外去泛素化测定表明,IRF7 不是 A20 DUB 活性的底物。此外,在潜伏性 EBV 感染的 3 型 Raji 细胞中,A20 与内源性 IRF7 相互作用,在这些细胞中,大量内源性 LMP1 持续诱导 A20 和 IRF7 的表达。通过表达 A20 短发夹 RNA (shRNA) 载体敲低 Raji 细胞中的内源性 A20,会增加内源性 IRF7 活性和泛素化,以及 LMP1 的蛋白水平,LMP1 是 IRF7 的靶标。因此,A20 负调控 EBV 潜伏状态下 LMP1 刺激的 IRF7 泛素化和活性,其 DUB 活性对于此功能是不可或缺的。最后,我们讨论了 EBV 潜伏期内 IRFs 的调节和功能。

相似文献

1
The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7.
J Virol. 2010 Jun;84(12):6130-8. doi: 10.1128/JVI.00364-10. Epub 2010 Apr 14.
3
TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation.
PLoS Pathog. 2015 May 21;11(5):e1004890. doi: 10.1371/journal.ppat.1004890. eCollection 2015 May.
6
The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway.
mBio. 2021 Oct 26;12(5):e0109721. doi: 10.1128/mBio.01097-21. Epub 2021 Sep 7.
7
Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination.
Mol Cell Biol. 2007 Apr;27(8):2910-8. doi: 10.1128/MCB.02256-06. Epub 2007 Feb 12.
10
A20 (TNFAIP3) deletion in Epstein-Barr virus-associated lymphoproliferative disorders/lymphomas.
PLoS One. 2013;8(2):e56741. doi: 10.1371/journal.pone.0056741. Epub 2013 Feb 13.

引用本文的文献

1
A20 as a Potential Therapeutic Target for COVID-19.
Immun Inflamm Dis. 2025 Jan;13(1):e70127. doi: 10.1002/iid3.70127.
2
The multiple roles of interferon regulatory factor family in health and disease.
Signal Transduct Target Ther. 2024 Oct 9;9(1):282. doi: 10.1038/s41392-024-01980-4.
3
IRF7: role and regulation in immunity and autoimmunity.
Front Immunol. 2023 Aug 10;14:1236923. doi: 10.3389/fimmu.2023.1236923. eCollection 2023.
5
Strains Modulate Intestinal Innate Immune Response and Increase Resistance to Enterotoxigenic Infection.
Microorganisms. 2022 Dec 25;11(1):63. doi: 10.3390/microorganisms11010063.
6
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis.
Cancers (Basel). 2022 Jan 26;14(3):611. doi: 10.3390/cancers14030611.
7
Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity.
Front Microbiol. 2021 Dec 13;12:805223. doi: 10.3389/fmicb.2021.805223. eCollection 2021.
8
Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing.
Exp Mol Med. 2021 Nov;53(11):1647-1668. doi: 10.1038/s12276-021-00691-y. Epub 2021 Nov 16.
9
New Look of EBV LMP1 Signaling Landscape.
Cancers (Basel). 2021 Oct 29;13(21):5451. doi: 10.3390/cancers13215451.
10
An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities.
Front Immunol. 2021 Oct 11;12:742542. doi: 10.3389/fimmu.2021.742542. eCollection 2021.

本文引用的文献

2
Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes.
PLoS One. 2009 Aug 26;4(8):e6764. doi: 10.1371/journal.pone.0006764.
3
Activation of innate immune antiviral responses by Nod2.
Nat Immunol. 2009 Oct;10(10):1073-80. doi: 10.1038/ni.1782. Epub 2009 Aug 23.
4
RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway.
Cell. 2009 Aug 7;138(3):576-91. doi: 10.1016/j.cell.2009.06.015. Epub 2009 Jul 23.
5
Breaking the chains: structure and function of the deubiquitinases.
Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63. doi: 10.1038/nrm2731.
6
Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity.
Pharmacol Ther. 2009 Nov;124(2):219-34. doi: 10.1016/j.pharmthera.2009.06.012. Epub 2009 Jul 15.
7
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate.
Nat Immunol. 2009 Oct;10(10):1065-72. doi: 10.1038/ni.1779. Epub 2009 Jul 16.
8
TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas.
Blood. 2009 Sep 17;114(12):2467-75. doi: 10.1182/blood-2008-12-194852. Epub 2009 Jul 16.
9
RIG-I-like receptors: sensing and responding to RNA virus infection.
Semin Immunol. 2009 Aug;21(4):215-22. doi: 10.1016/j.smim.2009.05.001. Epub 2009 Jun 17.
10
Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling.
PLoS One. 2009 Jun 18;4(6):e5955. doi: 10.1371/journal.pone.0005955.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验