Department of Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands.
Am J Ther. 2010 Nov-Dec;17(6):e202-7. doi: 10.1097/MJT.0b013e3181d5e411.
Individual patients' predictors of survival may change across time, because people may change their lifestyles. Standard statistical methods do not allow adjustments for time-dependent predictors. In the past decade, time-dependent factor analysis has been introduced as a novel approach adequate for the purpose. Using examples from survival studies, we assess the performance of the novel method. SPSS statistical software is used (SPSS Inc., Chicago, IL). Cox regression is a major simplification of real life; it assumes that the ratio of the risks of dying in parallel groups is constant over time. It is, therefore, inadequate to analyze, for example, the effect of elevated low-density lipoprotein cholesterol on survival, because the relative hazard of dying is different in the first, second, and third decades. The time-dependent Cox regression model allowing for nonproportional hazards is applied and provides a better precision than the usual Cox regression (P = 0.117 versus 0.0001). Elevated blood pressure produces the highest risk at the time it is highest. An overall analysis of the effect of blood pressure on survival is not significant, but after adjustment for the periods with highest blood pressures using the segmented time-dependent Cox regression method, blood pressure is a significant predictor of survival (P = 0.04). In a long-term therapeutic study, treatment modality is a significant predictor of survival, but after the inclusion of the time-dependent low-density lipoprotein cholesterol variable, the precision of the estimate improves from a P value of 0.02 to 0.0001. Predictors of survival may change across time, e.g., the effect of smoking, cholesterol, and increased blood pressure in cardiovascular research and patients' frailty in oncology research. Analytical models for survival analysis adjusting such changes are welcome. The time-dependent and segmented time-dependent predictors are adequate for the purpose. The usual multiple Cox regression model can include both time-dependent and time-independent predictors.
个体患者的生存预测因素可能随时间而变化,因为人们可能会改变生活方式。标准统计方法不允许针对随时间变化的预测因素进行调整。在过去的十年中,已经引入了随时间变化的因子分析作为一种合适的新方法。我们使用生存研究的实例来评估新方法的性能。使用 SPSS 统计软件(SPSS Inc.,芝加哥,IL)。Cox 回归是对现实生活的主要简化;它假设并行组中死亡风险的比例随时间保持不变。因此,用它来分析例如,高胆固醇血症对生存的影响是不充分的,因为在最初、第二和第三个十年中,死亡的相对风险是不同的。应用允许非比例风险的随时间变化的 Cox 回归模型,比通常的 Cox 回归提供更好的精度(P=0.117 对 0.0001)。血压升高时风险最高。血压对生存的总体影响不显著,但使用分段随时间变化的 Cox 回归方法对血压最高时期进行调整后,血压是生存的显著预测因素(P=0.04)。在长期治疗研究中,治疗方式是生存的重要预测因素,但在纳入随时间变化的低密度脂蛋白胆固醇变量后,估计的精度从 P 值 0.02 提高到 0.0001。生存预测因素可能随时间变化,例如,在心血管研究中吸烟、胆固醇和血压升高的影响以及肿瘤学研究中患者脆弱性的影响。欢迎分析生存分析的预测模型来调整这些变化。随时间变化和分段随时间变化的预测因素适合于该目的。通常的多 Cox 回归模型可以同时包含随时间变化和不随时间变化的预测因素。