Heinzl H, Kaider A, Zlabinger G
Department of Medical Computer Sciences, University of Vienna, Spitalgasse, Austria.
Stat Med. 1996 Dec 15;15(23):2589-601. doi: 10.1002/(SICI)1097-0258(19961215)15:23<2589::AID-SIM373>3.0.CO;2-O.
The Cox proportional hazards model is the most popular model for the analysis of survival data. Time-dependent covariates can be included in a straightforward manner. In most cases such covariates will be binary, indicating some form of changing group membership, with individuals starting in group 0, and changing into group 1 after the occurrence of a specific event. If there is evidence that the hazard ratio between these two groups depends on the sojourn time in group 1, then the use of cubic spline functions will allow investigation of the shape of the supposed effect and provide two main advantages-no particular functional form has to be specified and standard computer software packages like SAS or BMDP can be used.
Cox比例风险模型是用于生存数据分析的最常用模型。时间相依协变量可以直接纳入。在大多数情况下,此类协变量将是二元的,表明某种形式的组成员身份变化,个体从0组开始,在特定事件发生后转变为1组。如果有证据表明这两组之间的风险比取决于在1组中的停留时间,那么使用三次样条函数将允许研究假定效应的形状,并提供两个主要优点——无需指定特定的函数形式,并且可以使用像SAS或BMDP这样的标准计算机软件包。