Suppr超能文献

对映体纯的羟羧酸:当前方法和未来展望。

Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives.

机构信息

Swiss Federal Laboratories for Materials Testing and Research (Empa), Laboratory for Biomaterials, 9014 St. Gallen, Switzerland.

出版信息

Appl Microbiol Biotechnol. 2010 Jun;87(1):41-52. doi: 10.1007/s00253-010-2530-6.

Abstract

The growing awareness of the importance of chirality in conjunction with biological activity has led to an increasing demand for efficient methods for the industrial synthesis of enantiomerically pure compounds. Polyhydroxyalkanotes (PHAs) are a family of polyesters consisting of over 140 chiral R-hydroxycarboxylic acids (R-HAs), representing a promising source for obtaining chiral chemicals from renewable carbon sources. Although some R-HAs have been produced for some time and certain knowledge of the production processes has been gained, large-scale production has not yet been possible. In this article, through analysis of the current advances in production of these acids, we present guidelines for future developments in biotechnological processes for R-HA production.

摘要

手性在生物活性方面的重要性日益受到关注,这导致了人们对高效方法的需求不断增加,以实现对映体纯化合物的工业合成。聚羟基烷酸酯(PHAs)是由超过 140 种手性 R-羟基羧酸(R-HA)组成的聚酯家族,是从可再生碳源获得手性化学品的有前途的来源。尽管已经有一些 R-HA 生产了一段时间,并且已经获得了某些生产工艺的知识,但大规模生产尚未实现。在本文中,通过分析这些酸生产的最新进展,我们为未来的生物技术 R-HA 生产工艺的发展提供了指导方针。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f164/2872024/5ed41d7a3cfe/253_2010_2530_Fig1_HTML.jpg

相似文献

1
Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives.
Appl Microbiol Biotechnol. 2010 Jun;87(1):41-52. doi: 10.1007/s00253-010-2530-6.
2
Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals.
Biotechnol Bioeng. 1999 Nov 5;65(3):363-8. doi: 10.1002/(sici)1097-0290(19991105)65:3<363::aid-bit15>3.0.co;2-1.
4
Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications.
Appl Microbiol Biotechnol. 2007 Feb;74(1):1-12. doi: 10.1007/s00253-006-0732-8. Epub 2006 Dec 5.
5
Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(--)-hydroxycarboxylic acids.
Appl Environ Microbiol. 2003 Jun;69(6):3421-6. doi: 10.1128/AEM.69.6.3421-3426.2003.
6
Biotechnological production of (R)-3-hydroxybutyric acid monomer.
J Biotechnol. 2007 Nov 1;132(3):264-72. doi: 10.1016/j.jbiotec.2007.03.015. Epub 2007 Apr 22.
7
New opportunities for biocatalysis: driving the synthesis of chiral chemicals.
Curr Opin Biotechnol. 2011 Dec;22(6):784-92. doi: 10.1016/j.copbio.2011.07.002. Epub 2011 Jul 23.
8
Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology.
ChemSusChem. 2018 Nov 23;11(22):3836-3870. doi: 10.1002/cssc.201801700. Epub 2018 Oct 19.
9
Future of microbial polyesters.
Microb Cell Fact. 2013 May 28;12:54. doi: 10.1186/1475-2859-12-54.
10
Bacterial polyhydroxyalkanoates: Still fabulous?
Microbiol Res. 2016 Nov;192:271-282. doi: 10.1016/j.micres.2016.07.010. Epub 2016 Aug 7.

引用本文的文献

2
Engineering Pseudomonas aeruginosa for (R)-3-hydroxydecanoic acid production.
AMB Express. 2025 May 6;15(1):72. doi: 10.1186/s13568-025-01880-y.
5
Synthetic Control of Metabolic States in Pseudomonas putida by Tuning Polyhydroxyalkanoate Cycle.
mBio. 2022 Feb 22;13(1):e0179421. doi: 10.1128/mbio.01794-21. Epub 2022 Jan 18.
9
Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion.
Front Bioeng Biotechnol. 2020 Apr 3;8:248. doi: 10.3389/fbioe.2020.00248. eCollection 2020.
10
The role of the acyl-CoA thioesterase "YciA" in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli.
Appl Microbiol Biotechnol. 2019 May;103(9):3693-3704. doi: 10.1007/s00253-019-09707-0. Epub 2019 Mar 5.

本文引用的文献

1
Structural and synthetic studies of the spore germination autoinhibitor, gloeosporone.
J Am Chem Soc. 1988 Aug 1;110(18):6210-8. doi: 10.1021/ja00226a041.
2
A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.
Chem Soc Rev. 2009 Aug;38(8):2434-46. doi: 10.1039/b812677c. Epub 2009 May 8.
3
Microbial production of 4-hydroxybutyrate, poly-4-hydroxybutyrate, and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by recombinant microorganisms.
Appl Microbiol Biotechnol. 2009 Oct;84(5):909-16. doi: 10.1007/s00253-009-2023-7. Epub 2009 May 12.
4
Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate.
Appl Environ Microbiol. 2009 May;75(10):3137-45. doi: 10.1128/AEM.02667-08. Epub 2009 Mar 20.
5
Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene.
Appl Microbiol Biotechnol. 2009 Jun;83(3):513-9. doi: 10.1007/s00253-009-1919-6. Epub 2009 Mar 7.
7
The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice.
Biomaterials. 2009 Mar;30(8):1532-41. doi: 10.1016/j.biomaterials.2008.12.012. Epub 2008 Dec 27.
8
Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440.
Appl Microbiol Biotechnol. 2009 Mar;82(4):657-62. doi: 10.1007/s00253-008-1785-7. Epub 2008 Dec 3.
9
High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida.
J Biotechnol. 2009 Jan 1;139(1):61-7. doi: 10.1016/j.jbiotec.2008.09.002. Epub 2008 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验