Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691, Stockholm, Sweden.
Faculty of Science and Technology, Center of Biotechnology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
Appl Microbiol Biotechnol. 2019 May;103(9):3693-3704. doi: 10.1007/s00253-019-09707-0. Epub 2019 Mar 5.
Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.
生物技术生产的(R)-3-羟基丁酸是抗生素、维生素和其他受益于对映选择性生产的分子的有趣前体。在重组大肠杆菌中生产(R)-3-羟基丁酸的常用途径包括三个步骤:(1)两个乙酰辅酶 A 分子缩合形成乙酰乙酰辅酶 A,(2)乙酰乙酰辅酶 A 还原为(R)-3-羟基丁酸辅酶 A,(3)硫酯酶将(R)-3-羟基丁酸辅酶 A 水解为(R)-3-羟基丁酸。虽然对于前两个步骤,有许多经过验证的异源候选基因,但内源性或异源硫酯酶的作用定义较少。本研究调查了四种天然硫酯酶(TesA、TesB、YciA 和 FadM)对含有来自 Halomonas boliviensis 的硫解酶和还原酶的工程大肠杆菌 AF1000 生产(R)-3-羟基丁酸的贡献。yc iA 的缺失使(R)-3-羟基丁酸的产率降低了 43%,而 tesB 和 fadM 的缺失仅导致轻微降低。yc iA 的过表达使批培养物中的(R)-3-羟基丁酸的滴度、生产率和产率增加了一倍。与葡萄糖-6-磷酸脱氢酶的过表达一起,这导致批培养物中最终(R)-3-羟基丁酸浓度增加了 2.7 倍,在补料分批培养物中最终(R)-3-羟基丁酸的浓度达到 14.3 g/L。在这项研究中,yc iA 的过表达产生了积极的影响,与之前的结果相反,之前的结果是硫酯酶之前的酶来自不同的宿主,或者(S)-3-羟基丁酰辅酶 A 是底物,这表明在特定途径和能够达到显著产物滴度的菌株和培养条件下评估硫酯酶的重要性。虽然这直接关系到(R)-3-羟基丁酸的生产,但这些发现也有助于改善酰基辅酶 A 衍生产物的途径或减少副产物的形成。