Suppr超能文献

耳蜗根细胞的膜特性与钾循环和空间缓冲作用相符。

The Membrane Properties of Cochlear Root Cells are Consistent with Roles in Potassium Recirculation and Spatial Buffering.

作者信息

Jagger Daniel J, Nevill Graham, Forge Andrew

机构信息

Centre for Auditory Research, UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE UK.

出版信息

J Assoc Res Otolaryngol. 2010 Sep;11(3):435-48. doi: 10.1007/s10162-010-0218-3. Epub 2010 Apr 15.

Abstract

Auditory transduction, amplification, and hair cell survival depend on the regulation of extracellular [K(+)] in the cochlea. K(+) is removed from the vicinity of sensory hair cells by epithelial cells, and may be distributed through the epithelial cell syncytium, reminiscent of "spatial buffering" in glia. Hypothetically, K(+) is then transferred from the epithelial syncytium into the connective tissue syncytium within the cochlear lateral wall, enabling recirculation of K(+) back into endolymph. This may involve secretion of K(+) from epithelial root cells, and its re-uptake via transporters into spiral ligament fibrocytes. The molecular basis of this secretion is not known. Using a combination of approaches we demonstrated that the resting conductance in guinea pig root cells was dominated by K(+) channels, most likely composed of the Kir4.1 subunit. Dye injections revealed extensive intercellular gap junctional coupling, and delineated the root cell processes that penetrated the spiral ligament. Following uncoupling using 1-octanol, individual cells had Ba(2+)-sensitive weakly rectifying currents. In the basal (high-frequency encoding) cochlear region K(+) loads are predicted to be the highest, and root cells in this region had the largest surface area and the highest current density, consistent with their role in K(+) secretion. Kir4.1 was localized within root cells by immunofluorescence, and specifically to root cell process membranes by immunogold labeling. These results support a role for root cells in cochlear K(+) regulation, and suggest that channels composed of Kir4.1 subunits may mediate K(+) secretion from the epithelial gap junction network.

摘要

听觉转导、放大以及毛细胞存活取决于耳蜗中细胞外[K⁺]的调节。K⁺由上皮细胞从感觉毛细胞附近清除,并可能通过上皮细胞合体进行分布,这类似于神经胶质细胞中的“空间缓冲”。据推测,然后K⁺从上皮合体转移到耳蜗外侧壁内的结缔组织合体内,从而使K⁺再循环回到内淋巴中。这可能涉及K⁺从上皮根细胞的分泌,以及通过转运体将其重新摄取到螺旋韧带成纤维细胞中。这种分泌的分子基础尚不清楚。通过多种方法的结合,我们证明豚鼠根细胞的静息电导主要由K⁺通道主导,最有可能由Kir4.1亚基组成。染料注射显示广泛的细胞间缝隙连接耦合,并描绘了穿透螺旋韧带的根细胞突起。使用1 - 辛醇解偶联后,单个细胞具有Ba²⁺敏感的弱整流电流。在耳蜗基底(高频编码)区域,预计K⁺负荷最高,该区域的根细胞具有最大的表面积和最高的电流密度,这与其在K⁺分泌中的作用一致。通过免疫荧光法将Kir4.1定位在根细胞内,并通过免疫金标记法特异性地定位在根细胞突起膜上。这些结果支持根细胞在耳蜗K⁺调节中的作用,并表明由Kir4.1亚基组成的通道可能介导上皮缝隙连接网络中的K⁺分泌。

相似文献

1
The Membrane Properties of Cochlear Root Cells are Consistent with Roles in Potassium Recirculation and Spatial Buffering.
J Assoc Res Otolaryngol. 2010 Sep;11(3):435-48. doi: 10.1007/s10162-010-0218-3. Epub 2010 Apr 15.
4
Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
Eur J Neurosci. 2008 Jan;27(1):145-54. doi: 10.1111/j.1460-9568.2007.05994.x. Epub 2007 Dec 17.
5
The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss.
Neuroscience. 2014 Apr 18;265:137-46. doi: 10.1016/j.neuroscience.2014.01.036. Epub 2014 Jan 28.
6
Gap junction systems in the mammalian cochlea.
Brain Res Brain Res Rev. 2000 Apr;32(1):163-6. doi: 10.1016/s0165-0173(99)00076-4.
7
Development of gap junctional intercellular communication within the lateral wall of the rat cochlea.
Neuroscience. 2011 Apr 28;180:360-9. doi: 10.1016/j.neuroscience.2011.02.011. Epub 2011 Feb 12.
8
Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.
Neuroscience. 2010 Mar 17;166(2):397-407. doi: 10.1016/j.neuroscience.2010.01.005. Epub 2010 Jan 14.
9
KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
Am J Physiol Cell Physiol. 2002 Feb;282(2):C403-7. doi: 10.1152/ajpcell.00312.2001.

引用本文的文献

2
The Blood-Labyrinth Barrier: Non-Invasive Delivery Strategies for Inner Ear Drug Delivery.
Pharmaceutics. 2025 Apr 7;17(4):482. doi: 10.3390/pharmaceutics17040482.
3
ZBTB20 is essential for cochlear maturation and hearing in mice.
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2220867120. doi: 10.1073/pnas.2220867120. Epub 2023 Jun 6.
5
AAV8BP2 and AAV8 transduce the mammalian cochlear lateral wall and endolymphatic sac with high efficiency.
Mol Ther Methods Clin Dev. 2022 Jul 31;26:371-383. doi: 10.1016/j.omtm.2022.07.013. eCollection 2022 Sep 8.
6
Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis.
Front Cell Dev Biol. 2022 Mar 4;10:841708. doi: 10.3389/fcell.2022.841708. eCollection 2022.
9
Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea.
Neurobiol Aging. 2019 Aug;80:210-222. doi: 10.1016/j.neurobiolaging.2019.04.009. Epub 2019 Apr 18.
10
The Stress Response in the Non-sensory Cells of the Cochlea Under Pathological Conditions-Possible Role in Mediating Noise Vulnerability.
J Assoc Res Otolaryngol. 2018 Dec;19(6):637-652. doi: 10.1007/s10162-018-00691-2. Epub 2018 Sep 6.

本文引用的文献

1
Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness.
Curr Opin Otolaryngol Head Neck Surg. 2008 Oct;16(5):452-7. doi: 10.1097/MOO.0b013e32830e20b0.
3
Cellular characterization of Connexin26 and Connnexin30 expression in the cochlear lateral wall.
Cell Tissue Res. 2008 Sep;333(3):395-403. doi: 10.1007/s00441-008-0641-5. Epub 2008 Jun 26.
4
The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1751-6. doi: 10.1073/pnas.0711463105. Epub 2008 Jan 24.
6
Molecular and physiological bases of the K+ circulation in the mammalian inner ear.
Physiology (Bethesda). 2006 Oct;21:336-45. doi: 10.1152/physiol.00023.2006.
7
Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential.
J Physiol. 2006 Oct 1;576(Pt 1):11-21. doi: 10.1113/jphysiol.2006.112888. Epub 2006 Jul 20.
8
Gap junctions and cochlear homeostasis.
J Membr Biol. 2006 Feb-Mar;209(2-3):177-86. doi: 10.1007/s00232-005-0832-x. Epub 2006 May 17.
9
Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea.
J Neurosci. 2006 Jan 25;26(4):1260-8. doi: 10.1523/JNEUROSCI.4278-05.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验