Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
J Phys Chem A. 2010 May 13;114(18):5743-51. doi: 10.1021/jp100889t.
Electrostatic influences on NMR parameters are well accepted. Experimental and computational routes have been long pursued to understand and utilize such Stark effects. However, existing approaches are largely indirect informants on electric fields, and/or are complicated by multiple causal factors in spectroscopic change. We present a system to directly measure quadrupolar Stark effects from an applied electric (E) field. Our apparatus and applications are relevant in two contexts. Each uses a radiofrequency (rf) E field at twice the nuclear Larmor frequency (2omega(0)). The mechanism is a distortion of the E-field gradient tensor that is linear in the amplitude (E(0)) of the rf E field. The first uses 2omega(0) excitation of double-quantum transitions for times similar to T(1) (the longitudinal spin relaxation time). This perturbs the steady state distribution of spin population. Nonlinear analysis versus E(0) can be used to determine the Stark response rate. The second context uses POWER (perturbations observed with enhanced resolution) NMR. Here, coherent, short-time (<<T(2), the transverse relaxation rate) excitation at 2omega(0) is synchronized with an NMR multiple-pulse line-narrowing sequence. Linear analysis of the Stark response is then possible: a quadrupolar multiplet with splitting proportional to E(0). The POWER sequence converts the 2omega(0) interaction from off-diagonal/nonsecular to the familiar diagonal form (I(z)(2)) of static quadrupole interactions. Meanwhile, background contributions to line width are averaged to zero, providing orders-of-magnitude resolution enhancement for correspondingly high sensitivity to the Stark effect. Using GaAs as a test case with well-defined Stark response, we provide the first demonstration of the 2omega(0) effect at high-field (14.1 T) and room temperature. This, along with the simplicity of our apparatus and spectral approach, may facilitate extensions to a wider array of material and molecular systems. The POWER context, which has not previously been tested, is detailed here with new design insights. Several key aspects are demonstrated here, while complete implementation is to be presented at a later time. At present, we (1) account for finite pulse times in pulse sequence design, (2) demonstrate two-channel phase coherence for magnetic (omega(0)) and electric (2omega(0)) excitation, and (3) provide line narrowing by a factor of 10(3). In addition, we find that certain anomalous contributions to the line shape, observed in previous low-field (250 mT) applications, are absent here.
静电对 NMR 参数的影响已被广泛接受。为了理解和利用这种 Stark 效应,人们已经长期探索实验和计算途径。然而,现有的方法在很大程度上是电场的间接信息来源,或者在光谱变化中受到多种因果因素的影响。我们提出了一种直接测量外加电场(E)引起的四极 Stark 效应的系统。我们的仪器和应用在两个方面都具有相关性。每个应用都使用射频(rf)E 场,其频率为核拉莫尔频率(ω0)的两倍(2ω0)。该机制是射频 E 场幅度(E0)的线性变形,会使 E 场梯度张量发生扭曲。第一种应用是使用 2ω0 激发双量子跃迁,时间与 T1(纵向自旋弛豫时间)相似。这会扰乱自旋种群的稳态分布。对 E0 的非线性分析可用于确定 Stark 响应速率。第二种应用是 POWER(增强分辨率观测到的扰动)NMR。在此,在 2ω0 处进行相干的短时间(<<T2,横向弛豫速率)激发,同时与 NMR 多重脉冲线窄化序列同步。然后可以对 Stark 响应进行线性分析:具有与 E0 成比例的分裂的四极子多重峰。POWER 序列将 2ω0 相互作用从非对角/非瞬态转换为静态四极相互作用熟悉的对角形式(I(z)(2))。同时,背景线宽贡献被平均为零,为 Stark 效应提供了数量级的分辨率增强,相应地提高了灵敏度。我们使用具有明确定义 Stark 响应的 GaAs 作为测试案例,首次在高场(14.1 T)和室温下展示了 2ω0 效应。结合我们仪器和光谱方法的简单性,这可能会促进更广泛的材料和分子系统的扩展。POWER 上下文在此处详细介绍,同时提供了新的设计见解。在此处演示了几个关键方面,而完整的实现将在以后的时间提供。目前,我们(1)在脉冲序列设计中考虑有限脉冲时间,(2)证明了用于磁(ω0)和电(2ω0)激发的双通道相位相干性,以及(3)通过因子 10(3)提供线窄化。此外,我们发现,在以前的低场(250 mT)应用中观察到的某些线形状的异常贡献在此处不存在。