Bayer CropScience, Stilwell, Kansas 66085, USA.
Environ Sci Technol. 2010 May 15;44(10):3839-45. doi: 10.1021/es100506s.
For pesticides that do not pass higher-level environmental exposure assessments, vegetated filter strips (VFS) are often mandated for use of the compound. However, VFS physiographic characteristics (i.e., width) are not currently specified based on predictive modeling of VFS performance. This has been due to the lack of predictive tools that can explain the wide range of field-reported efficacies. This research hypothesizes that mechanistic modeling of VFS runoff and sediment trapping, integrated with an empirical, regression-based pesticide trapping equation and the U.S. Environmental Protection Agency's (EPA) exposure framework, is able to effectively derive these VFS characteristics. To test this hypothesis, a well-tested process-based model for VFS (VFSMOD) was coupled with the pesticide trapping equation and integrated with EPA's PRZM/EXAMS exposure package. The revised framework was applied to a prescribed U.S. EPA assessment scenario for four hypothetical pesticides: more mobile (i.e., organic carbon (OC) sorption coefficients, K(oc), of 100 L/kg OC) and less mobile (2000 L/kg OC) pesticides that are fast degrading or stable (i.e., 10 or 10,000 d aquatic dissipation half-lives). A nonlinear and complex relationship was observed between pesticide reduction, VFS length, and rainfall plus runon event size. The impact of VFS on environmental exposure concentrations (EECs) was found to be dependent on the pesticide sorption and dissipation half-life and whether calculating an acute or chronic EEC. While acute and chronic EECs were equivalent for stable pesticides, for fast degrading pesticides the acute EEC depended on specific loading events. Therefore, while VFS may reduce the cumulative pesticide loading, a corresponding reduction in the acute EEC may not always be observed. Such results emphasize the need to incorporate physically based modeling of VFS reductions for pesticides that do not pass the current U.S. EPA exposure assessment framework.
对于未通过高级环境暴露评估的农药,通常要求使用植被过滤带(VFS)。然而,目前并没有根据 VFS 性能的预测模型来规定 VFS 的地貌特征(即宽度)。这是由于缺乏能够解释广泛的现场报道功效的预测工具。本研究假设,VFS 径流和泥沙截留的机理模型,与基于经验的、基于回归的农药截留方程以及美国环保署(EPA)的暴露框架相结合,能够有效地推导出这些 VFS 特征。为了验证这一假设,我们将经过充分验证的 VFS 过程模型(VFSMOD)与农药截留方程相结合,并与 EPA 的 PRZM/EXAMS 暴露包集成。修订后的框架应用于四个假设农药的美国 EPA 规定评估方案:更具移动性(即有机碳(OC)吸附系数 K(oc)为 100 L/kg OC)和移动性较差(2000 L/kg OC)的农药,这些农药快速降解或稳定(即 10 或 10,000 d 水消散半衰期)。观察到农药减少、VFS 长度和降雨加径流事件大小之间存在非线性和复杂的关系。发现 VFS 对环境暴露浓度(EEC)的影响取决于农药的吸附和消解半衰期以及计算急性或慢性 EEC 的情况。对于稳定的农药,急性和慢性 EEC 是等效的,但对于快速降解的农药,急性 EEC 取决于特定的加载事件。因此,虽然 VFS 可以减少累积农药负荷,但并不总是观察到急性 EEC 的相应减少。这些结果强调了需要对未通过当前美国 EPA 暴露评估框架的农药进行基于物理的 VFS 减少的建模。