Suppr超能文献

基于足底运动学数据识别常见运动项目中的踝关节扭伤动作。

Identification of ankle sprain motion from common sporting activities by dorsal foot kinematics data.

机构信息

Department of Orthopaedics and Traumatology, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

J Biomech. 2010 Jul 20;43(10):1965-9. doi: 10.1016/j.jbiomech.2010.03.014. Epub 2010 Apr 14.

Abstract

This study presented a method to identify ankle sprain motion from common sporting activities by dorsal foot kinematics data. Six male subjects performed 300 simulated supination sprain trials and 300 non-sprain trials in a laboratory. Eight motion sensors were attached to the right dorsal foot to collect three-dimensional linear acceleration and angular velocity kinematics data, which were used to train up a support vector machine (SVM) model for the identification purpose. Results suggested that the best identification method required only one motion sensor located at the medial calcaneus, and the method was verified on another group of six subjects performing 300 simulated supination sprain trials and 300 non-sprain trials. The accuracy of this method was 91.3%, and the method could help developing a mobile motion sensor system for ankle sprain detection.

摘要

本研究提出了一种通过足背运动学数据识别常见运动中踝关节扭伤运动的方法。6 名男性受试者在实验室中分别完成了 300 次模拟内翻扭伤试验和 300 次非扭伤试验。8 个运动传感器被贴在右脚背,以采集三维线性加速度和角速度运动学数据,用于训练支持向量机(SVM)模型进行识别。结果表明,最佳识别方法仅需要一个位于跟骨内侧的运动传感器,并且该方法在另外 6 名受试者进行的 300 次模拟内翻扭伤试验和 300 次非扭伤试验中得到了验证。该方法的准确率为 91.3%,该方法可帮助开发用于踝关节扭伤检测的移动运动传感器系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验