文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可穿戴传感器在预防、评估和告知运动相关肌肉骨骼损伤康复中的应用:系统范围综述。

The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review.

机构信息

Department for Health, University of Bath, Bath BA2 7AY, UK.

Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath BA2 7AY, UK.

出版信息

Sensors (Basel). 2022 Apr 22;22(9):3225. doi: 10.3390/s22093225.


DOI:10.3390/s22093225
PMID:35590914
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9105988/
Abstract

Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features-such as research design, scope, experimental settings, and applied context-were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field.

摘要

可穿戴技术通常被认为是一种工具,它可以在现场收集定量的生物力学数据,并且可以长时间、几乎不受空间限制地进行非侵入式收集。尽管有很多关于它们在伤害预防和管理领域的潜在影响的说法,但似乎很少有人关注将这种潜力建立在将可穿戴设备的数量与肌肉骨骼损伤联系起来的生物力学研究基础上,也很少有人关注评估这些生物力学方法在实际应用中的准备情况。我们进行了一项系统的范围综述,从生物力学角度描述和批判性分析了使用可穿戴技术研究运动中肌肉骨骼损伤的研究现状。从 Web of Science、Scopus 和 PubMed 数据库中总共检索到 4952 篇文章,其中包括 165 篇文章。总结和评估了多个研究特征,如研究设计、范围、实验设置和应用背景。我们还提出了一种伤害研究准备程度分类工具,以评估使用可穿戴设备的生物力学方法的成熟度。从这次审查中得出了五个主要结论,我们以此为基础,提出了该领域未来研究和传播的指南和良好实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/85ae7dd15b7a/sensors-22-03225-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/3a30b65de4dc/sensors-22-03225-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/1c64a52162e7/sensors-22-03225-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/bf3d36d6a77e/sensors-22-03225-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/be577fe3db7d/sensors-22-03225-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/4f6a2914046c/sensors-22-03225-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/34baa2ae3cda/sensors-22-03225-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/1f8758044893/sensors-22-03225-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/2d84df8ed3e2/sensors-22-03225-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/d4c2c7e79288/sensors-22-03225-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/85ae7dd15b7a/sensors-22-03225-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/3a30b65de4dc/sensors-22-03225-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/1c64a52162e7/sensors-22-03225-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/bf3d36d6a77e/sensors-22-03225-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/be577fe3db7d/sensors-22-03225-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/4f6a2914046c/sensors-22-03225-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/34baa2ae3cda/sensors-22-03225-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/1f8758044893/sensors-22-03225-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/2d84df8ed3e2/sensors-22-03225-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/d4c2c7e79288/sensors-22-03225-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6304/9105988/85ae7dd15b7a/sensors-22-03225-g010.jpg

相似文献

[1]
The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review.

Sensors (Basel). 2022-4-22

[2]
Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review.

Sensors (Basel). 2019-4-2

[3]
Wearable Sensors in Sports for Persons with Disability: A Systematic Review.

Sensors (Basel). 2021-3-7

[4]
The Fundamentals and Applications of Wearable Sensor Devices in Sports Medicine: A Scoping Review.

Arthroscopy. 2025-2

[5]
Wearable Sensor Technologies to Assess Motor Functions in People With Multiple Sclerosis: Systematic Scoping Review and Perspective.

J Med Internet Res. 2023-7-27

[6]
Wearable Monitoring Devices for Biomechanical Risk Assessment at Work: Current Status and Future Challenges-A Systematic Review.

Int J Environ Res Public Health. 2018-9-13

[7]
Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.

Hum Mov Sci. 2020-12

[8]
From data to action: a scoping review of wearable technologies and biomechanical assessments informing injury prevention strategies in sport.

BMC Sports Sci Med Rehabil. 2023-12-14

[9]
The Impact of Wearable Technologies in Health Research: Scoping Review.

JMIR Mhealth Uhealth. 2022-1-25

[10]
Workload a-WEAR-ness: Monitoring Workload in Team Sports With Wearable Technology. A Scoping Review.

J Orthop Sports Phys Ther. 2020-10

引用本文的文献

[1]
Motion Capture Technologies for Athletic Performance Enhancement and Injury Risk Assessment: A Review for Multi-Sport Organizations.

Sensors (Basel). 2025-7-13

[2]
Evaluating Sparse Inertial Measurement Unit Configurations for Inferring Treadmill Running Motion.

Sensors (Basel). 2025-3-27

[3]
Automated Detection of Change of Direction in Basketball Players Using Xsens Motion Tracking.

Sensors (Basel). 2025-2-5

[4]
Evaluation of WIMU Sensor Performance in Estimating Running Stride and Vertical Stiffness in Football Training Sessions: A Comparison with Smart Insoles.

Sensors (Basel). 2024-12-18

[5]
Optimizing young tennis players' development: Exploring the impact of emerging technologies on training effectiveness and technical skills acquisition.

PLoS One. 2024

[6]
Overarm Training Tolerance: A Pilot Study on the Use of Muscle Oxygen Saturation as a Biomarker.

Sensors (Basel). 2024-7-20

[7]
Assessing Trail Running Biomechanics: A Comparative Analysis of the Reliability of Stryd and GARMIN Wearable Devices.

Sensors (Basel). 2024-6-1

[8]
Sacroiliac Joint Dysfunction in Endurance Runners Using Wearable Technology as a Clinical Monitoring Tool: Systematic Review.

JMIR Biomed Eng. 2024-5-20

[9]
Biomechanical Assessment Methods Used in Chronic Stroke: A Scoping Review of Non-Linear Approaches.

Sensors (Basel). 2024-4-6

[10]
E-Textiles for Sports and Fitness Sensing: Current State, Challenges, and Future Opportunities.

Sensors (Basel). 2024-2-6

本文引用的文献

[1]
A musculoskeletal multifactorial individualised programme for hamstring muscle injury risk reduction in professional football: results of a prospective cohort study.

BMJ Open Sport Exerc Med. 2024-2-8

[2]
Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis.

Sensors (Basel). 2022-2-23

[3]
Validity of the Training-Load Concept.

Int J Sports Physiol Perform. 2022-4-1

[4]
Assessment of Stability of MIMU Probes to Skin-Marker-Based Anatomical Reference Frames During Locomotion Tasks: Effect of Different Locations on the Lower Limb.

Front Bioeng Biotechnol. 2021-12-22

[5]
Anterior cruciate ligament injury prevention in sport: biomechanically informed approaches.

Sports Biomech. 2024-11

[6]
Defining Training and Performance Caliber: A Participant Classification Framework.

Int J Sports Physiol Perform. 2022-2-1

[7]
Estimation of Mechanical Power Output Employing Deep Learning on Inertial Measurement Data in Roller Ski Skating.

Sensors (Basel). 2021-9-29

[8]
Novel technology in sports biomechanics: some words of caution.

Sports Biomech. 2024-4

[9]
Wearable Sensors in Sports for Persons with Disability: A Systematic Review.

Sensors (Basel). 2021-3-7

[10]
Personalized machine learning approach to injury monitoring in elite volleyball players.

Eur J Sport Sci. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索