Division of Pediatric Pulmonology, Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Germany.
Am J Respir Cell Mol Biol. 2011 Feb;44(2):244-54. doi: 10.1165/rcmb.2009-0115OC. Epub 2010 Apr 15.
Conditional regulation of gene expression by the combined use of a lung-specific promoter and the tetracycline-regulated system provides a powerful tool for studying gene function in lung biology and disease pathogenesis in a development-independent fashion. However, the original version of the reverse tetracycline-dependent transactivator (rtTA) exhibited limited doxycycline sensitivity and residual affinity to its promoter (P(tet)), producing leaky transgene expression in the absence of doxycycline. These limitations impeded the use of this system in studying gene dosage effects in pulmonary pathogenesis and repair mechanisms in the diseased lung. Therefore, we used a new-generation rtTA, rtTA2(s)-M2, with no basal activity and increased doxycycline sensitivity, and the rat Clara cell secretory protein (CCSP) promoter to target its expression to pulmonary epithelia in mice. Novel CCSP-rtTA2(s)-M2 founder lines were crossed, with bi-transgenic reporter mice expressing luciferase and Cre recombinase. Background activity, doxycycline sensitivity, tissue and cell-type specificity, inducibility, and reversibility of doxycycline-dependent gene expression were determined by luciferase activity, immunohistochemistry, morphometry, and bioluminescence measurements in neonatal and adult lungs. We generated two distinct novel CCSP-rtTA2(s)-M2 activator mouse lines that confer tight and doxycycline dose-dependent regulation of transgene expression, with high inducibility, complete reversibility, and no background activity, in airway and alveolar epithelia. We conclude that rtTA2(s)-M2 enables quantitative control of conditional gene expression in respiratory epithelia of the murine lung, and that the new CCSP-rtTA2(s)-M2 activator mouse lines will be useful in the further elucidation of the pathogenesis of complex lung diseases and in studies of lung repair.
通过联合使用肺特异性启动子和四环素调控系统对基因表达进行条件调控,为研究肺生物学和疾病发病机制中的基因功能提供了一种强大的工具,且这种方式与发育无关。然而,最初的反向四环素依赖型转录激活剂(rtTA)表现出有限的强力霉素敏感性和对其启动子(P(tet))的残余亲和力,导致在没有强力霉素的情况下漏转基因表达。这些限制阻碍了该系统在研究肺部发病机制中的基因剂量效应和患病肺中的修复机制中的应用。因此,我们使用了一种新的 rtTA2(s)-M2,它没有基础活性和增加的强力霉素敏感性,以及大鼠 Clara 细胞分泌蛋白(CCSP)启动子,将其表达靶向到小鼠的肺上皮细胞中。新型 CCSP-rtTA2(s)-M2 创始系进行杂交,产生表达荧光素酶和 Cre 重组酶的双转基因报告小鼠。通过荧光素酶活性、免疫组织化学、形态计量学和生物发光测量,在新生和成年肺中测定背景活性、强力霉素敏感性、组织和细胞类型特异性、诱导性和强力霉素依赖性基因表达的可逆性。我们生成了两种不同的新型 CCSP-rtTA2(s)-M2 激活剂小鼠系,它们赋予了紧密的和强力霉素剂量依赖性的转基因表达调控,具有高诱导性、完全可逆性和无背景活性,在气道和肺泡上皮细胞中。我们得出结论,rtTA2(s)-M2 能够实现对小鼠肺部呼吸上皮细胞中条件基因表达的定量控制,并且新型 CCSP-rtTA2(s)-M2 激活剂小鼠系将有助于进一步阐明复杂肺部疾病的发病机制以及肺部修复的研究。