Suppr超能文献

对硒在硫氧还蛋白还原酶中的作用的不同看法。

Differing views of the role of selenium in thioredoxin reductase.

机构信息

Department of Biochemistry, College of Medicine, University of Vermont, Burlington, 05405, USA.

出版信息

Amino Acids. 2011 Jun;41(1):73-89. doi: 10.1007/s00726-010-0494-6. Epub 2010 Feb 21.

Abstract

This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pK (a) and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the "chemico-enzymatic" function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the "chemico-biological" function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO(2)(-), seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO(2)(-) to Cys-SH).

摘要

这篇综述涵盖了三种可以解释哺乳动物硫氧还蛋白还原酶活性部位硒代半胱氨酸需要以硒代半胱氨酸形式存在的化学解释。这些观点如下:(1)硒代半胱氨酸相对于半胱氨酸是一种优越的亲核试剂,(2)由于硒醇的 pKa(a)显著降低,其离去基团能力优于硫醇,以及(3)硒比硫更能接受电子(亲电性)。我们将这些化学解释称为硒在酶中的“化学生物学”功能。我们正式将硒的化学生物学功能定义为其允许硒酶催化其个别反应的特定化学性质。然而,我们和其他人都质疑硒代半胱氨酸是否在化学上是催化酶反应所必需的,因为含有硒代半胱氨酸的酶的半胱氨酸同系物以高催化效率催化其特定的酶反应。硒代半胱氨酸存在于酶中必须有一个独特的化学原因,这可以解释基因组中维持复杂的硒代半胱氨酸插入机制的生物压力。我们将这种生物压力称为硒代半胱氨酸的“化学生物学”功能。我们讨论了证据表明,这种化学生物学功能是硒酶抵抗不可逆氧化失活的能力。硒代半胱氨酸赋予抗氧化能力的方式可能是由于氧化形式的硒代半胱氨酸(Sec-SeO2(-),硒酸)比相同形式的半胱氨酸磺酸还原为半胱氨酸(Cys-SO2(-)到 Cys-SH)更能被循环回其母体形式(Sec-SeH,硒代半胱氨酸)。

相似文献

1
Differing views of the role of selenium in thioredoxin reductase.
Amino Acids. 2011 Jun;41(1):73-89. doi: 10.1007/s00726-010-0494-6. Epub 2010 Feb 21.
2
Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.
Biochemistry. 2014 Feb 4;53(4):654-63. doi: 10.1021/bi400658g. Epub 2014 Jan 23.
4
Selenocysteine in thiol/disulfide-like exchange reactions.
Antioxid Redox Signal. 2013 May 1;18(13):1675-89. doi: 10.1089/ars.2012.5013. Epub 2012 Dec 16.
6
Selenium in thioredoxin reductase: a mechanistic perspective.
Biochemistry. 2008 Dec 2;47(48):12810-21. doi: 10.1021/bi800951f.
7
Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine.
Biochemistry. 2020 Sep 15;59(36):3300-3315. doi: 10.1021/acs.biochem.0c00608. Epub 2020 Aug 30.
8
Thiol cofactors for selenoenzymes and their synthetic mimics.
Org Biomol Chem. 2008 Mar 21;6(6):965-74. doi: 10.1039/b716239a. Epub 2008 Jan 2.
9
Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis.
Biochemistry. 2014 Aug 5;53(30):5017-22. doi: 10.1021/bi5003376. Epub 2014 Jul 16.

引用本文的文献

1
Selenium Nucleophilicity and Electrophilicity in the Intra- and Intermolecular S2 Reactions of Selenenyl Sulfide Probes.
Chemistry. 2025 Feb 25;31(12):e202404580. doi: 10.1002/chem.202404580. Epub 2025 Feb 3.
3
50 Years of Organoselenium Chemistry, Biochemistry and Reactivity: Mechanistic Understanding, Successful and Controversial Stories.
Chemistry. 2024 Dec 13;30(70):e202403003. doi: 10.1002/chem.202403003. Epub 2024 Nov 20.
4
Selenium chemistry for spatio-selective peptide and protein functionalization.
Nat Rev Chem. 2024 Mar;8(3):211-229. doi: 10.1038/s41570-024-00579-1. Epub 2024 Feb 22.
5
Chemoproteomic interrogation of selenocysteine by low-pH isoTOP-ABPP.
Methods Enzymol. 2022;662:187-225. doi: 10.1016/bs.mie.2021.10.003. Epub 2021 Nov 15.
6
Programmed Deviations of Ribosomes From Standard Decoding in Archaea.
Front Microbiol. 2021 Jun 4;12:688061. doi: 10.3389/fmicb.2021.688061. eCollection 2021.
7
Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants.
Plants (Basel). 2020 Oct 24;9(11):1426. doi: 10.3390/plants9111426.
8
9
A Quantitative Chemoproteomic Platform to Monitor Selenocysteine Reactivity within a Complex Proteome.
Cell Chem Biol. 2018 Sep 20;25(9):1157-1167.e4. doi: 10.1016/j.chembiol.2018.05.017. Epub 2018 Jul 5.
10
The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis.
Nat Chem Biol. 2017 May;13(5):544-550. doi: 10.1038/nchembio.2335. Epub 2017 Mar 20.

本文引用的文献

2
Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1.
J Biol Chem. 2009 Feb 6;284(6):3998-4008. doi: 10.1074/jbc.M807068200. Epub 2008 Dec 3.
3
Selenium in thioredoxin reductase: a mechanistic perspective.
Biochemistry. 2008 Dec 2;47(48):12810-21. doi: 10.1021/bi800951f.
4
Reduction of L-methionine selenoxide to seleno-L-methionine by endogenous thiols, ascorbic acid, or methimazole.
Biochem Pharmacol. 2009 Jan 1;77(1):134-40. doi: 10.1016/j.bcp.2008.09.022. Epub 2008 Sep 27.
5
Cell death by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells.
PLoS One. 2008 Apr 2;3(4):e1846. doi: 10.1371/journal.pone.0001846.
7
Acid-base catalysis in the mechanism of thioredoxin reductase from Drosophila melanogaster.
Biochemistry. 2008 Feb 12;47(6):1721-31. doi: 10.1021/bi702040u. Epub 2008 Jan 23.
8
Synthesis of peptide substrates for mammalian thioredoxin reductase.
J Pept Sci. 2008 May;14(5):637-47. doi: 10.1002/psc.961.
9
Selenium in chemistry and biochemistry in comparison to sulfur.
Biol Chem. 2007 Oct;388(10):997-1006. doi: 10.1515/BC.2007.138.
10
Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.
Biochemistry. 2007 Aug 21;46(33):9472-83. doi: 10.1021/bi7004812. Epub 2007 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验