Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA.
J Neurosci Methods. 2010 Dec 15;194(1):46-55. doi: 10.1016/j.jneumeth.2010.04.008. Epub 2010 Apr 14.
Functionally related groups of neurons spatially cluster together in the brain. To detect groups of functionally related neurons from 3D histological data, we developed an objective clustering method that provides a description of detected cell clusters that is quantitative and amenable to visual exploration. This method is based on bubble clustering (Gupta and Ghosh, 2008). Our implementation consists of three steps: (i) an initial data exploration for scanning the clustering parameter space; (ii) determination of the optimal clustering parameters; and (iii) final clustering. We designed this algorithm to flexibly detect clusters without assumptions about the underlying cell distribution within a cluster or the number and sizes of clusters. We implemented the clustering function as an integral part of the neuroanatomical data visualization software Virtual RatBrain (http://www.virtualratbrain.org). We applied this algorithm to the basal forebrain cholinergic system, which consists of a diffuse but inhomogeneous population of neurons (Zaborszky, 1992). With this clustering method, we confirmed the inhomogeneity in this system, defined cell clusters, quantified and localized them, and determined the cell density within clusters. Furthermore, by applying the clustering method to multiple specimens from both rat and monkey, we found that cholinergic clusters display remarkable cross-species preservation of cell density within clusters. This method is efficient not only for clustering cell body distributions but may also be used to study other distributed neuronal structural elements, including synapses, receptors, dendritic spines and molecular markers.
大脑中功能相关的神经元群在空间上聚集在一起。为了从 3D 组织学数据中检测到功能相关的神经元群,我们开发了一种客观的聚类方法,该方法提供了对检测到的细胞群的描述,既定量又便于进行可视化探索。该方法基于气泡聚类(Gupta 和 Ghosh,2008)。我们的实现由三个步骤组成:(i)初始数据探索以扫描聚类参数空间;(ii)确定最佳聚类参数;和(iii)最终聚类。我们设计了这种算法,可以灵活地检测集群,而无需对集群内的潜在细胞分布、集群的数量和大小做出任何假设。我们将聚类功能作为神经解剖学数据可视化软件 Virtual RatBrain(http://www.virtualratbrain.org)的一个组成部分来实现。我们将该算法应用于基底前脑胆碱能系统,该系统由神经元的弥散但不均匀的群体组成(Zaborszky,1992)。通过使用这种聚类方法,我们证实了该系统的不均匀性,定义了细胞群,对其进行了量化和定位,并确定了集群内的细胞密度。此外,通过将聚类方法应用于来自大鼠和猴子的多个标本,我们发现胆碱能簇在跨物种内显示出集群内细胞密度的显著保存。这种方法不仅对聚类细胞体分布有效,而且还可用于研究其他分布的神经元结构元素,包括突触、受体、树突棘和分子标记。