Suppr超能文献

MorphML:用于神经元形态数据和模型规范的NeuroML标准的第1级。

MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification.

作者信息

Crook Sharon, Gleeson Padraig, Howell Fred, Svitak Joseph, Silver R Angus

机构信息

Department of Mathematics and Statistics, School of Life Sciences, and Center for Adaptive Neural Systems, Arizona State University, Tempe, AZ, USA.

出版信息

Neuroinformatics. 2007 Summer;5(2):96-104. doi: 10.1007/s12021-007-0003-6.

Abstract

Quantitative neuroanatomical data are important for the study of many areas of neuroscience, and the complexity of problems associated with neuronal structure requires that research from multiple groups across many disciplines be combined. However, existing neuron-tracing systems, simulation environments, and tools for the visualization and analysis of neuronal morphology data use a variety of data formats, making it difficult to exchange data in a readily usable way. The NeuroML project was initiated to address these issues, and here we describe an extensible markup language standard, MorphML, which defines a common data format for neuronal morphology data and associated metadata to facilitate data and model exchange, database creation, model publication, and data archiving. We describe the elements of the standard in detail and outline the mappings between this format and those used by a number of popular applications for reconstruction, simulation, and visualization of neuronal morphology.

摘要

定量神经解剖学数据对于许多神经科学领域的研究都很重要,并且与神经元结构相关的问题的复杂性要求整合来自多个学科的多个研究小组的研究成果。然而,现有的神经元追踪系统、模拟环境以及用于神经元形态数据可视化和分析的工具使用了多种数据格式,这使得以易于使用的方式交换数据变得困难。NeuroML项目旨在解决这些问题,在此我们描述一种可扩展标记语言标准——MorphML,它定义了一种用于神经元形态数据及相关元数据的通用数据格式,以促进数据和模型交换、数据库创建、模型发布以及数据存档。我们详细描述了该标准的元素,并概述了这种格式与一些用于神经元形态重建、模拟和可视化的流行应用所使用格式之间的映射关系。

相似文献

3
Generation, description and storage of dendritic morphology data.树突形态数据的生成、描述与存储。
Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1131-45. doi: 10.1098/rstb.2001.0905.
10
NSDF: Neuroscience Simulation Data Format.NSDF:神经科学模拟数据格式。
Neuroinformatics. 2016 Apr;14(2):147-67. doi: 10.1007/s12021-015-9282-5.

引用本文的文献

6
8
Is realistic neuronal modeling realistic?现实的神经元建模现实吗?
J Neurophysiol. 2016 Nov 1;116(5):2180-2209. doi: 10.1152/jn.00360.2016. Epub 2016 Aug 17.
10
Python as a federation tool for GENESIS 3.0.Python 作为 GENESIS 3.0 的联邦工具。
PLoS One. 2012;7(1):e29018. doi: 10.1371/journal.pone.0029018. Epub 2012 Jan 20.

本文引用的文献

7
ModelDB: A Database to Support Computational Neuroscience.ModelDB:一个支持计算神经科学的数据库。
J Comput Neurosci. 2004 Jul-Aug;17(1):7-11. doi: 10.1023/B:JCNS.0000023869.22017.2e.
10
Towards effective and rewarding data sharing.迈向有效且有益的数据共享。
Neuroinformatics. 2003;1(3):289-95. doi: 10.1385/NI:1:3:289.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验