Suppr超能文献

戒烟研究中的缺失数据假设和方法。

Missing data assumptions and methods in a smoking cessation study.

机构信息

Baylor Health Care System, Institute for Health Care Research and Improvement, Dallas, TX, USA.

出版信息

Addiction. 2010 Mar;105(3):431-7. doi: 10.1111/j.1360-0443.2009.02809.x.

Abstract

AIM

A sizable percentage of subjects do not respond to follow-up attempts in smoking cessation studies. The usual procedure in the smoking cessation literature is to assume that non-respondents have resumed smoking. This study used data from a study with a high follow-up rate to assess the degree of bias that may be caused by different methods of imputing missing data.

DESIGN AND METHODS

Based on a large data set with very little missing follow-up information at 12 months, a simulation study was undertaken to compare and contrast missing data imputation methods (assuming smoking, propensity score matching and optimal matching) under various assumptions as to how the missing data arose (randomly generated missing values, increased non-response from smokers and a hybrid of the two).

FINDINGS

Missing data imputation methods all resulted in some degree of bias which increased with the amount of missing data.

CONCLUSION

None of the missing data imputation methods currently available can compensate for bias when there are substantial amounts of missing data.

摘要

目的

在戒烟研究中,相当一部分研究对象对随访尝试没有反应。戒烟文献中的常用方法是假设未应答者已经恢复吸烟。本研究使用了一项随访率很高的研究的数据,以评估不同缺失数据插补方法可能引起的偏倚程度。

设计和方法

基于一个随访信息很少缺失的大数据集,在各种关于缺失数据如何产生的假设(随机生成缺失值、吸烟者的非应答率增加以及两者的混合)下,进行了一项模拟研究,以比较和对比缺失数据插补方法(假设吸烟、倾向评分匹配和最佳匹配)。

发现

缺失数据插补方法都会导致一定程度的偏差,并且随着缺失数据量的增加而增加。

结论

当存在大量缺失数据时,目前可用的缺失数据插补方法都无法补偿偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验