Suppr超能文献

CLLD8/KMT1F 是一种赖氨酸甲基转移酶,对染色体分离很重要。

CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation.

机构信息

Laboratoire de Biologie Moléculaire de la Cellule, CNRS Unité Mixte de Recherche (UMR) 5239, Ecole Normale Supérieure de Lyon (ENS) Lyon, Université Claude Bernard Lyon 1 (UCBL1), Institut Fédératìf de Recherche (IFR)128, Faculté de Médecine Lyon Sud, F-69600 Oullins, France.

出版信息

J Biol Chem. 2010 Jun 25;285(26):20234-41. doi: 10.1074/jbc.M109.052399. Epub 2010 Apr 19.

Abstract

Proteins bearing a SET domain have been shown to methylate lysine residues in histones and contribute to chromatin architecture. Methylation of histone H3 at lysine 9 (H3K9) has emerged as an important player in the formation of heterochromatin, chromatin condensation, and transcriptional repression. Here, we have characterized a previously undescribed member of the histone H3K9 methyltransferase family named CLLD8 (or SETDB2 or KMT1F). This protein contributes to the trimethylation of both interspersed repetitive elements and centromere-associated repeats and participates in the recruitment of heterochromatin protein 1 to centromeres. Consistently, depletion in CLLD8/KMT1F coincides with a loss of CENP proteins and delayed mitosis, suggesting that this protein participates in chromosome condensation and segregation. Altogether, our results provide evidence that CLLD8/KMT1F is recruited to heterochromatin regions and contributes in vivo to the deposition of trimethyl marks in concert with SUV39H1/KMT1A.

摘要

具有 SET 结构域的蛋白质已被证明可使组蛋白赖氨酸残基甲基化,并有助于染色质结构。组蛋白 H3 赖氨酸 9(H3K9)的甲基化已成为异染色质形成、染色质浓缩和转录抑制的重要参与者。在这里,我们描述了一个以前未被描述的组蛋白 H3K9 甲基转移酶家族成员,命名为 CLLD8(或 SETDB2 或 KMT1F)。该蛋白有助于散在重复元件和着丝粒相关重复的三甲基化,并参与异染色质蛋白 1 到着丝粒的募集。一致地,CLLD8/KMT1F 的耗竭伴随着 CENP 蛋白的丢失和有丝分裂延迟,表明该蛋白参与染色体浓缩和分离。总之,我们的结果提供了证据,表明 CLLD8/KMT1F 被招募到异染色质区域,并与 SUV39H1/KMT1A 一起在体内有助于三甲基标记的沉积。

相似文献

1
CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation.
J Biol Chem. 2010 Jun 25;285(26):20234-41. doi: 10.1074/jbc.M109.052399. Epub 2010 Apr 19.
2
Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1.
J Biol Chem. 2013 Aug 30;288(35):25285-25296. doi: 10.1074/jbc.M113.470724. Epub 2013 Jul 7.
3
SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation.
Nature. 2007 Nov 15;450(7168):440-4. doi: 10.1038/nature06268.

引用本文的文献

2
Histone Methylation, Energy Metabolism, and Alzheimer's Disease.
Aging Dis. 2024 Nov 15;16(5):2831-2858. doi: 10.14336/AD.2024.0899.
3
SETDB2 interacts with BUBR1 to induce accurate chromosome segregation independently of its histone methyltransferase activity.
FEBS Open Bio. 2024 Mar;14(3):444-454. doi: 10.1002/2211-5463.13761. Epub 2024 Jan 9.
4
To target or not to target? The role of DNA and histone methylation in bacterial infections.
Epigenetics. 2023 Dec;18(1):2242689. doi: 10.1080/15592294.2023.2242689. Epub 2023 Sep 20.
5
Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies.
Signal Transduct Target Ther. 2023 Feb 17;8(1):71. doi: 10.1038/s41392-023-01342-6.
6
Inhibitors of DNA Methylation.
Adv Exp Med Biol. 2022;1389:471-513. doi: 10.1007/978-3-031-11454-0_17.
7
Dominant role of DNA methylation over H3K9me3 for IAP silencing in endoderm.
Nat Commun. 2022 Sep 19;13(1):5447. doi: 10.1038/s41467-022-32978-7.
8
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance.
Nat Rev Mol Cell Biol. 2022 Sep;23(9):623-640. doi: 10.1038/s41580-022-00483-w. Epub 2022 May 13.
9
H3K9 trimethylation in active chromatin restricts the usage of functional CTCF sites in SINE B2 repeats.
Genes Dev. 2022 Apr 1;36(7-8):414-432. doi: 10.1101/gad.349282.121. Epub 2022 Mar 31.
10
H3K9 Methyltransferases Suv39h1 and Suv39h2 Control the Differentiation of Neural Progenitor Cells in the Adult Hippocampus.
Front Cell Dev Biol. 2022 Jan 12;9:778345. doi: 10.3389/fcell.2021.778345. eCollection 2021.

本文引用的文献

1
Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR.
Retrovirology. 2008 May 22;5:40. doi: 10.1186/1742-4690-5-40.
3
Cell cycle control of centromeric repeat transcription and heterochromatin assembly.
Nature. 2008 Feb 7;451(7179):734-7. doi: 10.1038/nature06561. Epub 2008 Jan 23.
4
New nomenclature for chromatin-modifying enzymes.
Cell. 2007 Nov 16;131(4):633-6. doi: 10.1016/j.cell.2007.10.039.
5
Stability and flexibility of epigenetic gene regulation in mammalian development.
Nature. 2007 May 24;447(7143):425-32. doi: 10.1038/nature05918.
6
ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19176-81. doi: 10.1073/pnas.0606373103. Epub 2006 Dec 1.
8
Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation.
Nature. 2005 Dec 22;438(7071):1116-22. doi: 10.1038/nature04219. Epub 2005 Oct 12.
9
Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1.
Biochem Biophys Res Commun. 2005 Nov 25;337(3):901-7. doi: 10.1016/j.bbrc.2005.09.132. Epub 2005 Sep 30.
10
Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase.
J Biol Chem. 2005 Oct 21;280(42):35261-71. doi: 10.1074/jbc.M504012200. Epub 2005 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验