Departments of Microbiology & Immunology, Northwestern University, Evanston, IL 60208-3113, USA.
J Biol Chem. 2010 Jul 2;285(27):20654-63. doi: 10.1074/jbc.M109.098350. Epub 2010 Apr 19.
Diphosphomevalonate (Mev.pp) is the founding member of a new class of potential antibiotics targeting the Streptococcus pneumoniae mevalonate (Mev) pathway. We have synthesized a series of Mev.pp analogues designed to simultaneously block two steps in this pathway, through allosteric inhibition of mevalonate kinase (MK) and, for five of the analogues, by mechanism-based inactivation of diphosphomevalonate decarboxylase (DPM-DC). The analogue series expands the C(3)-methyl group of Mev.pp with hydrocarbons of varying size, shape, and chemical and physical properties. Previously, we established the feasibility of a prodrug strategy in which unphosphorylated Mev analogues could be enzymatically converted to the active Mev.pp forms by the endogenous MK and phosphomevalonate kinase. We now report the kinetic parameters for the turnover of non-, mono-, and diphosphorylated analogues as substrates and inhibitors of the three mevalonate pathway enzymes. The inhibition of MK by Mev.pp analogues revealed that the allosteric site is selective for compact, electron-rich C(3)-subsitutents. The lack of reactivity of analogues with DPM-DC provided evidence, counter to the existing model, for a decarboxylation transition state that is concerted rather than dissociative. The Mev pathway is composed of three structurally and functionally conserved enzymes that catalyze consecutive steps in a metabolic pathway. The current work reveals that these enzymes exhibit significant differences in specificity toward R-group substitution at C(3) and that these patterns are explained well by changes in the volume of the C(3) R-group-binding pockets of the enzymes.
双磷酸甲羟戊酸(Mev.pp)是一类新型潜在抗生素的基础成员,其靶向肺炎链球菌甲羟戊酸(Mev)途径。我们已经合成了一系列 Mev.pp 类似物,旨在通过变构抑制磷酸甲羟戊酸激酶(MK)和对于其中五种类似物通过二磷酸甲羟戊酸脱羧酶(DPM-DC)的机制失活同时阻断该途径的两个步骤。该类似物系列通过各种大小、形状、化学和物理性质的烃扩展了 Mev.pp 的 C(3)-甲基基团。此前,我们已经确定了前药策略的可行性,其中未磷酸化的 Mev 类似物可以通过内源性 MK 和磷酸甲羟戊酸激酶酶促转化为活性 Mev.pp 形式。我们现在报告非磷酸化、单磷酸化和二磷酸化类似物作为三种 Mev 途径酶的底物和抑制剂的周转率的动力学参数。Mev.pp 类似物对 MK 的抑制作用表明变构部位对紧凑、富电子的 C(3)-取代基具有选择性。与 DPM-DC 反应性差的类似物为协同而非解离的脱羧过渡态提供了证据,这与现有模型相反。Mev 途径由三个结构和功能上保守的酶组成,它们催化代谢途径中的连续步骤。目前的工作表明,这些酶对 C(3)上 R 基团取代表现出明显的特异性差异,并且这些模式可以很好地通过酶的 C(3)R 基团结合口袋体积的变化来解释。