Suppr超能文献

一种 p53 的小分子抑制剂可刺激造血干细胞的扩增,但不会促进小鼠肿瘤的发展。

A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice.

机构信息

Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.

出版信息

Cell Cycle. 2010 Apr 1;9(7):1434-43. doi: 10.4161/cc.9.7.11508.

Abstract

It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could, in theory, contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work, we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice, PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition, we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly, however, PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus, although PFTb administration led to increased numbers of HSCs and HPCs, it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.

摘要

已经表明,抑制 p53 基因会导致造血干细胞(HSCs)的增殖增强。从理论上讲,这可能导致 p53 缺陷的小鼠和人类中观察到的肿瘤发生频率增加。在我们之前的工作中,我们确定了化学 p53 抑制剂(PFT),它们可以抑制 p53 的转录激活功能,并保护培养细胞和小鼠免受γ辐射(IR)诱导的死亡。在这里,我们发现当将 PFT 应用于体外骨髓细胞或注射到小鼠中时,它会阻碍 IR 诱导的造血干细胞(HSC)和造血祖细胞(HPC)群体大小的减少。此外,我们表明,PFT 在体外和体内没有 IR 的情况下刺激 HSC 和 HPC 的增殖,并将 HSCs动员到外周血中。重要的是,然而,PFT 处理不会影响用作致癌性测定模型的辐照 p53 杂合子小鼠中肿瘤发生的时间或频率。因此,尽管 PFT 给药会导致 HSCs 和 HPC 的数量增加,但它在小鼠中没有致癌性。这些发现表明,化学 p53 抑制剂可能在临床上有用,作为安全有效的造血刺激剂。

相似文献

3
Role of JNK and Contribution of p53 into Growth Potential of Mesenchymal Progenitor Cells In Vitro.
Bull Exp Biol Med. 2015 Jun;159(2):245-7. doi: 10.1007/s10517-015-2933-6. Epub 2015 Jun 27.
4
Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells.
Blood. 2012 Aug 23;120(8):1601-12. doi: 10.1182/blood-2011-11-393983. Epub 2012 Jul 9.
5
7
Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation.
Nat Chem Biol. 2006 Sep;2(9):474-9. doi: 10.1038/nchembio809. Epub 2006 Jul 23.
8
The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging.
Blood. 2007 Feb 15;109(4):1736-42. doi: 10.1182/blood-2006-03-010413. Epub 2006 Oct 10.
9
The p53 inhibitor, pifithrin-α, suppresses self-renewal of embryonic stem cells.
Biochem Biophys Res Commun. 2012 Apr 13;420(3):605-10. doi: 10.1016/j.bbrc.2012.03.041. Epub 2012 Mar 16.
10
Study on X-ray-induced apoptosis and chromosomal damage in G2 human lymphocytes in the presence of pifithrin-α, an inhibitor of p53.
Mutat Res. 2011 Nov 27;726(1):29-35. doi: 10.1016/j.mrgentox.2011.07.013. Epub 2011 Aug 26.

引用本文的文献

1
Exercise alleviates hematopoietic stem cell injury following radiation via the carnosine/Slc15a2-p53 axis.
Cell Commun Signal. 2024 Dec 3;22(1):582. doi: 10.1186/s12964-024-01959-2.
3
Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer.
Biomed Res Int. 2020 Sep 29;2020:1269624. doi: 10.1155/2020/1269624. eCollection 2020.
4
Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression.
Int J Mol Sci. 2019 Sep 7;20(18):4407. doi: 10.3390/ijms20184407.
5
The role of TP53 in acute myeloid leukemia: Challenges and opportunities.
Genes Chromosomes Cancer. 2019 Dec;58(12):875-888. doi: 10.1002/gcc.22796. Epub 2019 Sep 3.
6
Genetically engineered mouse models for studying radiation biology.
Transl Cancer Res. 2017 Jul;6(Suppl 5):S900-S913. doi: 10.21037/tcr.2017.06.19.
7
p53 and the Carcinogenicity of Chronic Inflammation.
Cold Spring Harb Perspect Med. 2016 Nov 1;6(11):a026161. doi: 10.1101/cshperspect.a026161.
9
Recent Advances in the 5q- Syndrome.
Mediterr J Hematol Infect Dis. 2015 May 20;7(1):e2015037. doi: 10.4084/MJHID.2015.037. eCollection 2015.
10
Radioprotection of normal tissue cells.
Strahlenther Onkol. 2014 Aug;190(8):745-52. doi: 10.1007/s00066-014-0637-x. Epub 2014 Mar 18.

本文引用的文献

1
Stem cells: The promises and perils of p53.
Nature. 2009 Aug 27;460(7259):1085-6. doi: 10.1038/4601085a.
2
Suppression of induced pluripotent stem cell generation by the p53-p21 pathway.
Nature. 2009 Aug 27;460(7259):1132-5. doi: 10.1038/nature08235. Epub 2009 Aug 9.
3
Immortalization eliminates a roadblock during cellular reprogramming into iPS cells.
Nature. 2009 Aug 27;460(7259):1145-8. doi: 10.1038/nature08285. Epub 2009 Aug 9.
4
A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity.
Nature. 2009 Aug 27;460(7259):1149-53. doi: 10.1038/nature08287. Epub 2009 Aug 9.
5
The Ink4/Arf locus is a barrier for iPS cell reprogramming.
Nature. 2009 Aug 27;460(7259):1136-9. doi: 10.1038/nature08290. Epub 2009 Aug 9.
6
Linking the p53 tumour suppressor pathway to somatic cell reprogramming.
Nature. 2009 Aug 27;460(7259):1140-4. doi: 10.1038/nature08311. Epub 2009 Aug 9.
7
p53 regulates hematopoietic stem cell quiescence.
Cell Stem Cell. 2009 Jan 9;4(1):37-48. doi: 10.1016/j.stem.2008.11.006.
9
Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors.
Nature. 2008 May 8;453(7192):228-32. doi: 10.1038/nature06869. Epub 2008 Apr 16.
10
The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging.
Blood. 2007 Feb 15;109(4):1736-42. doi: 10.1182/blood-2006-03-010413. Epub 2006 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验