Suppr超能文献

关于在原假设下通过惩罚回归进行降维对得分检验功效的影响的一则注释。

A note on the effect on power of score tests via dimension reduction by penalized regression under the null.

作者信息

Martinez Josue G, Carroll Raymond J, Muller Samuel, Sampson Joshua N, Chatterjee Nilanjan

机构信息

Texas A&M University, TX, USA.

出版信息

Int J Biostat. 2010 Mar 29;6(1):Article 12. doi: 10.2202/1557-4679.1231.

Abstract

We consider the problem of score testing for certain low dimensional parameters of interest in a model that could include finite but high dimensional secondary covariates and associated nuisance parameters. We investigate the possibility of the potential gain in power by reducing the dimensionality of the secondary variables via oracle estimators such as the Adaptive Lasso. As an application, we use a recently developed framework for score tests of association of a disease outcome with an exposure of interest in the presence of a possible interaction of the exposure with other co-factors of the model. We derive the local power of such tests and show that if the primary and secondary predictors are independent, then having an oracle estimator does not improve the local power of the score test. Conversely, if they are dependent, there is the potential for power gain. Simulations are used to validate the theoretical results and explore the extent of correlation needed between the primary and secondary covariates to observe an improvement of the power of the test by using the oracle estimator. Our conclusions are likely to hold more generally beyond the model of interactions considered here.

摘要

我们考虑在一个模型中对某些低维感兴趣参数进行得分检验的问题,该模型可能包含有限但高维的次要协变量及相关的干扰参数。我们研究通过诸如自适应套索等神谕估计器降低次要变量维度从而潜在提高检验功效的可能性。作为一个应用,我们使用最近开发的一个框架,用于在存在暴露与模型其他共同因素可能相互作用的情况下,对疾病结局与感兴趣暴露之间的关联进行得分检验。我们推导了此类检验的局部功效,并表明如果主要预测变量和次要预测变量是独立的,那么拥有一个神谕估计器并不会提高得分检验的局部功效。相反,如果它们是相关的,则存在提高功效的潜力。通过模拟来验证理论结果,并探索主要和次要协变量之间需要多大程度的相关性,才能通过使用神谕估计器观察到检验功效的提高。我们的结论可能比这里所考虑的相互作用模型更具普遍性。

相似文献

1
A note on the effect on power of score tests via dimension reduction by penalized regression under the null.
Int J Biostat. 2010 Mar 29;6(1):Article 12. doi: 10.2202/1557-4679.1231.
3
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.
4
Oracle estimation of parametric models under boundary constraints.
Biometrics. 2016 Dec;72(4):1173-1183. doi: 10.1111/biom.12520. Epub 2016 Apr 8.
5
Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.
J Pharmacokinet Pharmacodyn. 2017 Feb;44(1):55-66. doi: 10.1007/s10928-017-9504-6. Epub 2017 Jan 31.
6
Estimation and variable selection via frailty models with penalized likelihood.
Stat Med. 2012 Sep 10;31(20):2223-39. doi: 10.1002/sim.5325. Epub 2012 Mar 15.
7
Robust Adaptive Lasso method for parameter's estimation and variable selection in high-dimensional sparse models.
PLoS One. 2017 Aug 28;12(8):e0183518. doi: 10.1371/journal.pone.0183518. eCollection 2017.
8
Variable selection for binary spatial regression: Penalized quasi-likelihood approach.
Biometrics. 2016 Dec;72(4):1164-1172. doi: 10.1111/biom.12525. Epub 2016 Apr 8.
9
The lasso for high dimensional regression with a possible change point.
J R Stat Soc Series B Stat Methodol. 2016 Jan;78(1):193-210. doi: 10.1111/rssb.12108. Epub 2015 Feb 15.
10
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.

引用本文的文献

2
3
Penalized regression approaches to testing for quantitative trait-rare variant association.
Front Genet. 2014 May 13;5:121. doi: 10.3389/fgene.2014.00121. eCollection 2014.
4
Controlling the local false discovery rate in the adaptive Lasso.
Biostatistics. 2013 Sep;14(4):653-66. doi: 10.1093/biostatistics/kxt008. Epub 2013 Apr 9.
5
Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test.
Biostatistics. 2012 Sep;13(4):776-90. doi: 10.1093/biostatistics/kxs015. Epub 2012 Jun 25.
6
Multilocus association testing with penalized regression.
Genet Epidemiol. 2011 Dec;35(8):755-65. doi: 10.1002/gepi.20625. Epub 2011 Sep 15.

本文引用的文献

1
ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS.
Ann Stat. 2009;37(4):1733-1751. doi: 10.1214/08-AOS625.
2
L1 penalized estimation in the Cox proportional hazards model.
Biom J. 2010 Feb;52(1):70-84. doi: 10.1002/bimj.200900028.
3
Testing in semiparametric models with interaction, with applications to gene-environment interactions.
J R Stat Soc Series B Stat Methodol. 2009 Jan 1;71(1):75-96. doi: 10.1111/j.1467-9868.2008.00671.x.
4
Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions.
Am J Hum Genet. 2006 Dec;79(6):1002-16. doi: 10.1086/509704. Epub 2006 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验