Suppr超能文献

采用 CD-MUSIC 模型分析磷酸根在水铁矿上的吸附

Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model.

机构信息

Department of Physical Chemistry, University of Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain.

出版信息

J Colloid Interface Sci. 2010 Jul 1;347(1):112-9. doi: 10.1016/j.jcis.2010.03.020. Epub 2010 Mar 15.

Abstract

Ferrihydrite nanoparticles may dominate the ion binding properties of the natural oxide fraction present in soil and aquatic systems. A correct description of the adsorption properties of ferrihydrite nanoparticles may be useful for gaining a better insight into the adsorption processes in natural systems and at the same time will be essential for developing surface complexation models able to describe these processes. In the present study, phosphate speciation in ferrihydrite has been analyzed combining the available spectroscopic data and molecular information with modeling calculations. For this purpose, a new data set that analyzes the effect of pH and ionic strength on the phosphate adsorption onto ferrihydrite has been used. Description of the phosphate adsorption process onto ferrihydrite nanoparticles, for the entire pH and ionic strength range, has been made taking into account the presence of protonated and nonprotonated bidentate surface complexes. The presence of monodentate complexes, protonated and nonprotonated, was also analyzed, but no significant improvement in the description of the results was observed. The surface complexation constants obtained with the CD-MUSIC modeling calculations are comparable to the values found in the literature for phosphate surface complexes in goethite particles.

摘要

水铁矿纳米颗粒可能主导土壤和水系统中天然氧化物部分的离子结合特性。正确描述水铁矿纳米颗粒的吸附特性,可能有助于深入了解自然系统中的吸附过程,同时对于开发能够描述这些过程的表面络合模型也是至关重要的。在本研究中,通过结合现有的光谱数据和分子信息以及建模计算,分析了水铁矿中的磷酸盐形态。为此,使用了新的数据集,分析了 pH 值和离子强度对磷在水铁矿上吸附的影响。在考虑质子化和非质子化双齿表面络合物存在的情况下,对整个 pH 值和离子强度范围内的磷在水铁矿纳米颗粒上的吸附过程进行了描述。还分析了单齿络合物(质子化和非质子化)的存在,但没有观察到对结果描述的显著改善。使用 CD-MUSIC 建模计算得到的表面络合常数与文献中针铁矿颗粒中磷酸盐表面络合物的值相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验