Suppr超能文献

碳酸根对水铁矿的吸附:与磷酸根在土壤系统中的竞争作用

Carbonate Adsorption to Ferrihydrite: Competitive Interaction with Phosphate for Use in Soil Systems.

作者信息

Mendez Juan C, Hiemstra Tjisse

机构信息

Soil Chemistry and Chemical Soil Quality Group, Wageningen University, 6708 PB, Wageningen, The Netherlands.

出版信息

ACS Earth Space Chem. 2019 Jan 17;3(1):129-141. doi: 10.1021/acsearthspacechem.8b00160. Epub 2018 Dec 3.

Abstract

Carbonate (CO) interacts with Fe-(hydr)oxide nanoparticles, affecting the availability and geochemical cycle of other important oxyanions in nature. Here, we studied the carbonate-phosphate interaction in closed systems with freshly prepared ferrihydrite (Fh), using batch experiments that cover a wide range of pH values, ionic strength, and CO and PO concentrations. The surface speciation of CO has been assessed by interpreting the ion competition with the Charge Distribution (CD) model, using CD coefficients derived from MO/DTF optimized geometries. Adsorption of CO occurs predominately via formation of bidentate inner-sphere complexes, either (≡FeO)CO or (≡FeO)CO··Na. The latter complex is electrostatically promoted at high pH and in the presence of adsorbed PO. Additionally, a minor complex is present at high CO loadings. The CD model, solely parametrized by measuring the pH-dependent PO adsorption as a function of the CO concentration, successfully predicts the CO adsorption to Fh in single-ion systems. The adsorption affinity of CO to Fh is higher than to goethite, particularly at high pH and CO loadings due to the enhanced formation (≡FeO)CO··Na. The PO adsorption isotherm in 0.5 M NaHCO can be well described, being relevant for assessing the reactive surface area of the natural oxide fraction with soil extractions and CD modeling. Additionally, we have evaluated the enhanced Fh solubility due to Fe(III)-CO complex formation and resolved a new species (Fe(CO)(OH) (aq)), which is dominant in closed systems at high pH. The measured solubility of our Fh agrees with the size-dependent solubility predicted using the surface Gibbs free energy of Fh.

摘要

碳酸根(CO₃²⁻)与铁(氢)氧化物纳米颗粒相互作用,影响自然界中其他重要含氧阴离子的有效性和地球化学循环。在此,我们使用涵盖广泛pH值、离子强度以及CO₃²⁻和PO₄³⁻浓度的批次实验,研究了在含有新制备的水铁矿(Fh)的封闭体系中碳酸根与磷酸根的相互作用。通过使用从MO/DTF优化几何结构导出的CD系数,利用电荷分布(CD)模型解释离子竞争,评估了CO₃²⁻的表面形态。CO₃²⁻的吸附主要通过形成双齿内球络合物发生,即(≡FeO)₂CO₃或(≡FeO)₂CO₃··Na⁺。后一种络合物在高pH值和存在吸附的PO₄³⁻时通过静电作用得到促进。此外,在高CO₃²⁻负载量时存在一种次要络合物。仅通过测量作为CO₃²⁻浓度函数的pH依赖性PO₄³⁻吸附进行参数化的CD模型,成功预测了单离子体系中CO₃²⁻对Fh的吸附。CO₃²⁻对Fh的吸附亲和力高于对针铁矿的吸附亲和力,特别是在高pH值和CO₃²⁻负载量时,这是由于(≡FeO)₂CO₃··Na⁺形成增强所致。0.5 M NaHCO₃中的PO₄³⁻吸附等温线可以得到很好的描述,这对于通过土壤萃取和CD建模评估天然氧化物组分的反应表面积具有重要意义。此外,我们评估了由于Fe(III)-CO₃²⁻络合物形成导致的Fh溶解度增强,并解析出一种新物种(Fe(CO₃)(OH)₃(aq)),它在高pH值的封闭体系中占主导地位。我们测量的Fh溶解度与使用Fh的表面吉布斯自由能预测的尺寸依赖性溶解度一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98fa/6369681/b059eef79cf6/sp-2018-00160d_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验