Institute of Life Science, School of Medicine, Swansea University Singleton Park, Swansea, UK.
Front Mol Neurosci. 2010 Mar 23;3:8. doi: 10.3389/fnmol.2010.00008. eCollection 2010.
Human startle disease, also known as hyperekplexia (OMIM 149400), is a paroxysmal neurological disorder caused by defects in glycinergic neurotransmission. Hyperekplexia is characterised by an exaggerated startle reflex in response to tactile or acoustic stimuli which first presents as neonatal hypertonia, followed in some with episodes of life-threatening infantile apnoea. Genetic screening studies have demonstrated that hyperekplexia is genetically heterogeneous with several missense and nonsense mutations in the postsynaptic glycine receptor (GlyR) alpha1 subunit gene (GLRA1) as the primary cause. More recently, missense, nonsense and frameshift mutations have also been identified in the glycine transporter GlyT2 gene, SLC6A5, demonstrating a presynaptic component to this disease. Further mutations, albeit rare, have been identified in the genes encoding the GlyR beta subunit (GLRB), collybistin (ARHGEF9) and gephyrin (GPHN) - all of which are postsynaptic proteins involved in orchestrating glycinergic neurotransmission. In this review, we describe the clinical ascertainment aspects, phenotypic considerations and the downstream molecular genetic tools utilised to analyse both presynaptic and postsynaptic components of this heterogeneous human neurological disorder. Moreover, we will describe how the ancient startle response is the preserve of glycinergic neurotransmission and how animal models and human hyperekplexia patients have provided synergistic evidence that implicates this inhibitory system in the control of startle reflexes.
人类惊吓症,又称发作性肌张力不全(OMIM 149400),是一种由甘氨酸能神经传递缺陷引起的阵发性神经系统疾病。惊吓症的特征是对触觉或听觉刺激产生过度的惊吓反射,最初表现为新生儿肌张力过高,随后在一些患者中出现危及生命的婴儿呼吸暂停发作。遗传筛选研究表明,惊吓症具有遗传异质性,突触后甘氨酸受体(GlyR)α1 亚基基因(GLRA1)中的几个错义突变和无义突变是主要原因。最近,在甘氨酸转运体 GlyT2 基因(SLC6A5)中也发现了错义、无义和移码突变,表明该疾病存在突触前成分。尽管罕见,但在编码 GlyRβ亚基(GLRB)、Collibistin(ARHGEF9)和 Gephyrin(GPHN)的基因中也发现了进一步的突变,所有这些基因都是参与调节甘氨酸能神经传递的突触后蛋白。在这篇综述中,我们描述了临床确定方面、表型考虑因素以及用于分析这种异质性人类神经疾病的突触前和突触后成分的下游分子遗传工具。此外,我们还将描述古老的惊吓反应如何是甘氨酸能神经传递的保留物,以及动物模型和人类惊吓症患者如何提供协同证据,表明这种抑制系统参与了惊吓反射的控制。