Graduate School of Science, Nagoya University Nagoya, Japan.
Front Mol Neurosci. 2010 Jan 8;2:26. doi: 10.3389/neuro.02.026.2009. eCollection 2009.
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) beta subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called 'accordion' phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the 'twitch-once' phenotype. We review current knowledge regarding zebrafish 'accordion' and 'twitch-once' mutants, including beo and sho, and report the identification of a new alpha2 subunit that revises the phylogeny of zebrafish GlyRs.
甘氨酸是脊髓和脑干中的主要抑制性神经递质。最近,使用分子遗传学方法在斑马鱼中对甘氨酸能突触传递进行了体内分析。ENU 诱变筛选鉴定出两种行为突变体,它们在甘氨酸能突触传递中存在缺陷。斑马鱼 bandoneon (beo) 突变体在 glrbb 中存在缺陷,glrbb 是重复的甘氨酸受体 (GlyR)β亚基基因之一。这些突变体由于 GlyRs 的突触聚集缺乏而表现出甘氨酸能突触传递的丧失。由于脊髓两侧运动回路之间的相互抑制丧失,运动神经元在两侧同时激活,导致 beo 突变体的轴向肌肉双侧收缩,引起所谓的“手风琴”表型。在几种哺乳动物中观察到 GlyR 亚基基因的类似缺陷,这是人类肌阵挛性癫痫/惊吓病的基础。相比之下,斑马鱼 shocked (sho) 突变体在 slc6a9 中存在缺陷,该基因编码 GlyT1,GlyT1 是一种表达在小脑和脊髓中甘氨酸能突触周围的星形胶质细胞中的甘氨酸转运体。GlyT1 介导从突触间隙快速摄取甘氨酸,终止突触传递。在斑马鱼 sho 突变体中,似乎存在升高的细胞外甘氨酸,导致突触后神经元持续抑制,随后运动能力降低,导致“抽搐一次”表型。我们综述了关于斑马鱼“手风琴”和“抽搐一次”突变体(包括 beo 和 sho)的最新知识,并报告了一种新的α2 亚基的鉴定,该亚基修订了斑马鱼 GlyRs 的系统发育。