Department of Woman & Child, KU Leuven, Leuven, Belgium.
Psychophysiology. 2010 Nov;47(6):1142-50. doi: 10.1111/j.1469-8986.2010.01015.x.
Eye movement artifacts in electroencephalogram (EEG) recordings can greatly distort grand mean event-related potential (ERP) waveforms. Different techniques have been suggested to remove these artifacts prior to ERP analysis. Independent component analysis (ICA) is suggested as an alternative method to "filter" eye movement artifacts out of the EEG, preserving the brain activity of interest and preserving all trials. However, the identification of artifact components is not always straightforward. Here, we compared eye movement artifact removal by ICA compiled on 10 s of EEG, on eye movement epochs, or on the complete EEG recording to the removal of eye movement artifacts by rejecting trials or by the Gratton and Coles method. ICA performed as well as the Gratton and Coles method. By selecting only eye movement epochs for ICA compilation, we were able to facilitate the identification of components representing eye movement artifacts.
脑电图(EEG)记录中的眼动伪迹会极大地扭曲平均事件相关电位(ERP)波形。在进行 ERP 分析之前,已经提出了不同的技术来去除这些伪迹。独立成分分析(ICA)被建议作为一种替代方法,可以“过滤”出 EEG 中的眼动伪迹,保留感兴趣的脑活动并保留所有试验。然而,对伪迹成分的识别并不总是那么简单。在这里,我们比较了在 10 秒 EEG 上、在眼动时段上或在整个 EEG 记录上进行 ICA 编译以去除眼动伪迹,与通过拒绝试验或 Gratton 和 Coles 方法去除眼动伪迹的效果。ICA 的表现与 Gratton 和 Coles 方法一样好。通过仅选择眼动时段进行 ICA 编译,我们能够方便地识别代表眼动伪迹的成分。