Zaboski Brian A, Fineberg Sarah Kathryn, Skosnik Patrick D, Kichuk Stephen, Fitzpatrick Madison, Pittenger Christopher
Department of Psychiatry, Yale University School of Medicine, New Haven, CT.
Bouvé College of Health Sciences, Northeastern University, Boston, MA.
medRxiv. 2025 May 7:2025.05.06.25327094. doi: 10.1101/2025.05.06.25327094.
Classifying obsessive-compulsive disorder (OCD) using brain data remains challenging. Resting-state electroencephalography (EEG) offers an affordable and noninvasive approach, but traditional machine learning methods have limited its predictive capability. We explored whether convolutional neural networks (CNNs) applied to minimally processed EEG time-frequency representations could offer a solution, effectively distinguishing individuals with OCD from healthy controls.
We collected resting-state EEG data from 20 unmedicated participants (10 OCD, 10 healthy controls). Clean, 4-second EEG segments were transformed into time-frequency representations using Morlet wavelets. In a two-step evaluation, we first used a 2D CNN classifier using leave-one-subject-out cross-validation and compared it to a traditional support vector machine (SVM) trained on spectral band power features. Second, using multimodal fusion, we examined whether adding clinical and demographic information improved classification.
The CNN achieved strong classification accuracy (82.0%, AUC: 0.86), significantly outperforming the chance-level SVM baseline (49.0%, AUC: 0.45). Most clinical variables did not improve performance beyond the EEG data alone (subject-level accuracy: 80.0%). However, incorporating education level boosted performance notably (accuracy: 85.0%, AUC: 0.89).
CNNs applied to resting-state EEG show promise for diagnosing OCD, outperforming traditional machine learning methods. Despite sample size limitations, these findings highlight deep learning's potential in psychiatric applications. Education level emerged as a potentially complementary feature, warranting further investigation in larger, more diverse samples.
利用脑数据对强迫症(OCD)进行分类仍然具有挑战性。静息态脑电图(EEG)提供了一种经济实惠且非侵入性的方法,但传统的机器学习方法限制了其预测能力。我们探讨了应用于最少处理的EEG时频表征的卷积神经网络(CNN)是否能提供一种解决方案,有效地区分强迫症患者和健康对照者。
我们收集了20名未用药参与者(10名强迫症患者,10名健康对照者)的静息态EEG数据。使用Morlet小波将4秒的干净EEG片段转换为时频表征。在两步评估中,我们首先使用二维CNN分类器进行留一法交叉验证,并将其与基于频谱带功率特征训练的传统支持向量机(SVM)进行比较。其次,使用多模态融合,我们研究添加临床和人口统计学信息是否能改善分类。
CNN实现了较高的分类准确率(82.0%,AUC:0.86),显著优于机会水平的SVM基线(49.0%,AUC:0.45)。大多数临床变量单独使用EEG数据时并未提高性能(受试者水平准确率:最高80.0%)。然而,纳入教育水平显著提高了性能(准确率:85.0%,AUC:0.89)。
应用于静息态EEG的CNN在诊断强迫症方面显示出前景,优于传统机器学习方法。尽管样本量有限,但这些发现凸显了深度学习在精神病学应用中的潜力。教育水平成为一个潜在的互补特征,值得在更大、更多样化的样本中进一步研究。