Okada Yasushi, Hirokawa Nobutaka
Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
Methods Cell Biol. 2009;91:265-85. doi: 10.1016/S0091-679X(08)91014-1. Epub 2009 Dec 1.
Mammalian left-right determination is a good example of how multiple cell biological processes coordinate in the formation of a basic body plan, but until recently its mechanism was totally elusive. In the past 10 years, molecular genetic studies of kinesin and dynein motor proteins, live-cell imaging techniques, and theoretical studies of fluid mechanics revealed unexpected mechanisms of left-right determination. The leftward movement of fluid at the ventral node, called nodal flow, is the central process in symmetry breaking on the left-right axis. Nodal flow is autonomously generated by the rotation of posteriorly tilted cilia that are built by transport via the KIF3 motor on cells of the ventral node. Recent evidence suggests that nodal flow transports sheathed lipidic particles, called nodal vesicular parcels (NVPs), to the left edge of the node, which results in the activation of the noncanonical Hedgehog signaling pathway, an asymmetric elevation in intracellular Ca(2+), and changes in gene expression. This chapter reviews techniques for the observation of nodal cilia movement and nodal flow in living vertebrate embryos.
哺乳动物左右不对称的决定是多个细胞生物学过程如何在基本身体蓝图形成过程中协调的一个很好的例子,但直到最近其机制仍完全不清楚。在过去的10年里,对驱动蛋白和动力蛋白等运动蛋白的分子遗传学研究、活细胞成像技术以及流体力学的理论研究揭示了左右不对称决定的意外机制。腹侧节点处液体的向左流动,称为节点流,是左右轴上对称性破缺的核心过程。节点流是由腹侧节点细胞上通过KIF3驱动蛋白运输构建的向后倾斜的纤毛旋转自主产生的。最近的证据表明,节点流将被称为节点囊泡包裹体(NVPs)的带鞘脂质颗粒运输到节点的左边缘,这导致非经典Hedgehog信号通路的激活、细胞内Ca(2+)的不对称升高以及基因表达的变化。本章综述了在活的脊椎动物胚胎中观察节点纤毛运动和节点流的技术。