Center for Research in Biological Systems, National Center for Microscopy and Imaging Research and Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92037, USA.
Neuroscience. 2010 Sep 29;170(1):178-88. doi: 10.1016/j.neuroscience.2010.06.017. Epub 2010 Jun 23.
The purpose of this study was to investigate the progression of changes in retinal ganglion cells and optic nerve glia in neurofibromatosis-1 (NF1) genetically-engineered mice with optic glioma. Optic glioma tumors were generated in Nf1+/- mice lacking Nf1 expression in GFAP+ cells (astrocytes). Standard immunohistochemistry methods were employed to identify astrocytes (GFAP, S100beta), proliferating progenitor cells (sox2, nestin), microglia (Iba1), endothelial cells (CD31) and retinal ganglion cell (RGC) axons (Neurofilament 68k) in Nf1+/-, Nf1(GFAP)CKO (wild-type mice with Nf1 loss in glial cells), and Nf1+/-(GFAP)CKO (Nf1+/- mice with Nf1 loss in glial cells) mice. Ultrastructural changes in the optic chiasm and nerve were assessed by electron microscopy (EM). RGC were counted in whole retina preparations using high-resolution, mosaic confocal microscopy following their delineation by retrograde FluoroGold labeling. We found that only Nf1+/-(GFAP)CKO mice exhibited gross pre-chiasmatic optic nerve and chiasm enlargements containing aggregated GFAP+/nestin+ and S100beta+/sox2+ cells (neoplastic glia) as well as increased numbers of blood vessels and microglia. Optic gliomas in Nf1+/-(GFAP)CKO mice contained axon fiber irregularities and multilamellar bodies of degenerated myelin. EM and EM tomographic analyses showed increased glial disorganization, disoriented axonal projections, profiles of degenerating myelin and structural alterations at nodes of Ranvier. Lastly, we found reduced RGC numbers in Nf1+/-(GFAP)CKO mice, supporting a model in which the combination of optic nerve Nf1 heterozygosity and glial cell Nf1 loss results in disrupted axonal-glial relationships, subsequently culminating in the degeneration of optic nerve axons and loss of their parent RGC neurons.
这项研究的目的是研究神经纤维瘤病-1 (NF1) 基因工程小鼠视神经胶质瘤中视网膜神经节细胞和视神经胶质细胞变化的进展。视神经胶质瘤肿瘤在缺乏 GFAP+细胞(星形胶质细胞)中 NF1 表达的 Nf1+/- 小鼠中产生。采用标准免疫组织化学方法鉴定星形胶质细胞(GFAP、S100beta)、增殖祖细胞(sox2、nestin)、小胶质细胞(Iba1)、内皮细胞(CD31)和视网膜神经节细胞(RGC)轴突(神经丝 68k)在 Nf1+/-, Nf1(GFAP)CKO(野生型小鼠中神经胶质细胞中 NF1 缺失)和 Nf1+/-(GFAP)CKO(神经胶质细胞中 NF1 缺失的 Nf1+/- 小鼠)中。通过电子显微镜 (EM) 评估视交叉和神经的超微结构变化。通过逆行 FluoroGold 标记后,使用高分辨率、镶嵌共焦显微镜对整个视网膜制剂中的 RGC 进行计数。我们发现只有 Nf1+/-(GFAP)CKO 小鼠表现出明显的视交叉前视神经和视交叉增大,其中包含聚集的 GFAP+/nestin+和 S100beta+/sox2+细胞(肿瘤性神经胶质)以及更多数量的血管和小胶质细胞。Nf1+/-(GFAP)CKO 小鼠的视神经胶质瘤中含有轴突纤维不规则和变性髓磷脂的多层体。EM 和 EM 断层扫描分析显示,神经胶质排列紊乱、轴突投射方向紊乱、髓磷脂变性轮廓和Ranvier 结的结构改变。最后,我们发现 Nf1+/-(GFAP)CKO 小鼠中的 RGC 数量减少,支持这样一种模型,即视神经 NF1 杂合性和神经胶质细胞 NF1 缺失的组合导致轴突-神经胶质关系中断,随后导致视神经轴突变性和其母 RGC 神经元丢失。