Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
J Neurosci. 2010 Apr 21;30(16):5677-89. doi: 10.1523/JNEUROSCI.5407-09.2010.
Leak K(+) conductance generated by TASK1/3 channels is crucial for neuronal excitability. However, endogenous modulators activating TASK channels in neurons remained unknown. We previously reported that in the presumed cholinergic neurons of the basal forebrain (BF), activation of NO-cGMP-PKG (protein kinase G) pathway enhanced the TASK1-like leak K(+) current (I-K(leak)). As 8-Br-cGMP enhanced the I-K(leak) mainly at pH 7.3 as if changing the I-K(leak) from TASK1-like to TASK3-like current, such an enhancement of the I-K(leak) would result either from an enhancement of hidden TASK3 component or from an acidic shift in the pH sensitivity profile of TASK1 component. In view of the report that protonation of TASK channel decreases its open probability, the present study was designed to examine whether the activation of PKG increases the conductance of TASK1 channels by reducing their binding affinity for H(+), i.e., by increasing K(d) for protonation, or not. We here demonstrate that PKG activation and inhibition respectively upregulate and downregulate TASK1 channels heterologously expressed in PKG-loaded HEK293 cells at physiological pH, by causing shifts in the K(d) in the acidic and basic directions, respectively. Such PKG modulations of TASK1 channels were largely abolished by mutating pH sensor H98. In the BF neurons that were identified to express ChAT and TASK1 channels, similar dynamic modulations of TASK1-like pH sensitivity of I-K(leak) were caused by PKG. It is strongly suggested that PKG activation and inhibition dynamically modulate TASK1 currents at physiological pH by bidirectionally changing K(d) values for protonation of the extracellular pH sensors of TASK1 channels in cholinergic BF neurons.
TASK1/3 通道产生的钾泄漏电导对于神经元兴奋性至关重要。然而,在神经元中激活 TASK 通道的内源性调节剂仍然未知。我们之前报道,在基底前脑(BF)中的假定胆碱能神经元中,NO-cGMP-PKG(蛋白激酶 G)途径的激活增强了 TASK1 样漏钾电流(I-K(leak))。由于 8-Br-cGMP 主要在 pH 7.3 时增强 I-K(leak),就好像将 I-K(leak)从 TASK1 样转换为 TASK3 样电流一样,因此这种 I-K(leak)的增强要么是由于隐藏的 TASK3 成分的增强,要么是由于 TASK1 成分的 pH 敏感性曲线的酸性偏移。鉴于质子化 TASK 通道会降低其开放概率的报道,本研究旨在检查 PKG 的激活是否通过降低 TASK1 通道对 H(+)的结合亲和力(即增加质子化的 K(d))来增加 TASK1 通道的电导,或者不是。我们在此证明,PKG 激活和抑制分别上调和下调在 PKG 加载的 HEK293 细胞中异源表达的 TASK1 通道,分别通过在酸性和碱性方向引起 K(d)的变化。PKG 对 TASK1 通道的这种调节在很大程度上被 pH 传感器 H98 的突变所消除。在被鉴定为表达 ChAT 和 TASK1 通道的 BF 神经元中,PKG 引起 I-K(leak)的 TASK1 样 pH 敏感性的类似动态调节。强烈表明,PKG 激活和抑制通过双向改变 TASK1 通道细胞外 pH 传感器质子化的 K(d)值,在生理 pH 下动态调节胆碱能 BF 神经元中的 TASK1 电流。