Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, GermanY.
J Am Chem Soc. 2010 May 19;132(19):6735-41. doi: 10.1021/ja910624j.
The density deficit of water at hydrophobic interfaces, frequently called the hydrophobic gap, has been the subject of numerous experimental and theoretical studies in the past decade. Recent experiments give values for the interfacial depletion that consistently correspond to less than a monolayer of water. The main question which remained so far unanswered is its origin and the mechanisms affected by the chemistry and molecular geometry of a particular hydrophobic coating. In this work, we present a combined high-energy X-ray reflectivity and molecular dynamics simulation study of the water depletion at a perfluorinated hydrophobic interface with a spatial resolution on the molecular scale. A comparison of our experimental and computational results elucidates the underlying mechanisms that affect the extent of the interfacial depletion. The complex interplay between surface chemistry and topography precludes the existence of a direct and universal relation between the macroscopic contact angle and the nanoscopic water depletion.
在过去十年中,水在疏水界面的密度亏缺,通常称为疏水间隙,一直是众多实验和理论研究的主题。最近的实验给出了界面耗尽的值,这些值始终对应于少于单层的水。到目前为止,尚未回答的主要问题是其起源以及受特定疏水涂层的化学和分子几何形状影响的机制。在这项工作中,我们进行了一项结合高能量 X 射线反射率和分子动力学模拟的研究,以研究具有分子尺度空间分辨率的全氟化疏水界面的水耗竭。我们的实验和计算结果的比较阐明了影响界面耗尽程度的基础机制。表面化学和形貌之间的复杂相互作用排除了宏观接触角与纳米级水耗竭之间存在直接和通用关系的可能性。