Suppr超能文献

利用贝叶斯推断估计水牛产奶量和牛奶质量性状的遗传参数。

Genetic parameters for buffalo milk yield and milk quality traits using Bayesian inference.

机构信息

Department of Animal Science, São Paulo State University (FCAV/UNESP), Jaboticabal, SP, 14884 900, Brazil.

出版信息

J Dairy Sci. 2010 May;93(5):2195-201. doi: 10.3168/jds.2009-2621.

Abstract

The availability of accurate genetic parameters for important economic traits in milking buffaloes is critical for implementation of a genetic evaluation program. In the present study, heritabilities and genetic correlations for fat (FY305), protein (PY305), and milk (MY305) yields, milk fat (%F) and protein (%P) percentages, and SCS were estimated using Bayesian methodology. A total of 4,907 lactations from 1,985 cows were used. The (co)variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year and calving season), number of milking (2 levels), and age of cow at calving as (co)variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The posterior means of heritability distributions for MY305, FY305, PY305, %F, P%, and SCS were 0.22, 0.21, 0.23, 0.33, 0.39, and 0.26, respectively. The genetic correlation estimates ranged from -0.13 (between %P and SCS) to 0.94 (between MY305 and PY305). The permanent environmental correlation estimates ranged from -0.38 (between MY305 and %P) to 0.97 (between MY305 and PY305). Residual and phenotypic correlation estimates ranged from -0.26 (between PY305 and SCS) to 0.97 (between MY305 and PY305) and from -0.26 (between MY305 and SCS) to 0.97 (between MY305 and PY305), respectively. Milk yield, milk components, and milk somatic cells counts have enough genetic variation for selection purposes. The genetic correlation estimates suggest that milk components and milk somatic cell counts would be only slightly affected if increasing milk yield were the selection goal. Selecting to increase FY305 or PY305 will also increase MY305, %P, and %F.

摘要

对于挤奶水牛重要经济性状的准确遗传参数的可用性,对于遗传评估计划的实施至关重要。本研究应用贝叶斯方法估计了脂肪(FY305)、蛋白质(PY305)和牛奶(MY305)产量、牛奶脂肪(%F)和蛋白质(%P)百分比以及 SCS 的遗传力和遗传相关性。共使用了 1985 头奶牛的 4907 个泌乳期。通过贝叶斯推断法的多性状分析,应用动物模型,通过 Gibbs 抽样,估计了(协)方差分量。模型包括当代群体( herd-year 和产犊季节)、挤奶次数(2 个水平)和产犊时奶牛年龄的固定效应作为(协)变量(二次和线性效应)。模型中还包括加性遗传、永久环境和残余效应作为随机效应。MY305、FY305、PY305、%F、%P 和 SCS 的遗传力分布后验均值分别为 0.22、0.21、0.23、0.33、0.39 和 0.26。遗传相关估计值范围从 -0.13(%P 和 SCS 之间)到 0.94(MY305 和 PY305 之间)。永久环境相关估计值范围从 -0.38(MY305 和 %P 之间)到 0.97(MY305 和 PY305 之间)。残差和表型相关估计值范围从 -0.26(PY305 和 SCS 之间)到 0.97(MY305 和 PY305 之间)和从 -0.26(MY305 和 SCS 之间)到 0.97(MY305 和 PY305 之间)。牛奶产量、牛奶成分和牛奶体细胞计数具有足够的遗传变异,可以用于选择目的。遗传相关估计值表明,如果增加牛奶产量是选择目标,牛奶成分和牛奶体细胞计数只会受到轻微影响。选择增加 FY305 或 PY305 也会增加 MY305、%P 和 %F。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验