Suppr超能文献

一种通过整合相关牛 QTL 预测水牛乳性状的综合基因组预测方法。

An Integrative Genomic Prediction Approach for Predicting Buffalo Milk Traits by Incorporating Related Cattle QTLs.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Genes (Basel). 2022 Aug 11;13(8):1430. doi: 10.3390/genes13081430.

Abstract

Background: The 90K Axiom Buffalo SNP Array is expected to improve and speed up various genomic analyses for the buffalo (Bubalus bubalis). Genomic prediction is an effective approach in animal breeding to improve selection and reduce costs. As buffalo genome research is lagging behind that of the cow and production records are also limited, genomic prediction performance will be relatively poor. To improve the genomic prediction in buffalo, we introduced a new approach (pGBLUP) for genomic prediction of six buffalo milk traits by incorporating QTL information from the cattle milk traits in order to help improve the prediction performance for buffalo. Results: In simulations, the pGBLUP could outperform BayesR and the GBLUP if the prior biological information (i.e., the known causal loci) was appropriate; otherwise, it performed slightly worse than BayesR and equal to or better than the GBLUP. In real data, the heritability of the buffalo genomic region corresponding to the cattle milk trait QTLs was enriched (fold of enrichment > 1) in four buffalo milk traits (FY270, MY270, PY270, and PM) when the EBV was used as the response variable. The DEBV as the response variable yielded more reliable genomic predictions than the traditional EBV, as has been shown by previous research. The performance of the three approaches (GBLUP, BayesR, and pGBLUP) did not vary greatly in this study, probably due to the limited sample size, incomplete prior biological information, and less artificial selection in buffalo. Conclusions: To our knowledge, this study is the first to apply genomic prediction to buffalo by incorporating prior biological information. The genomic prediction of buffalo traits can be further improved with a larger sample size, higher-density SNP chips, and more precise prior biological information.

摘要

背景

90K Axiom Buffalo SNP 阵列有望改善和加速水牛(Bubalus bubalis)的各种基因组分析。基因组预测是动物育种中提高选择效率和降低成本的有效方法。由于水牛基因组研究落后于奶牛,且生产记录也有限,因此基因组预测性能相对较差。为了提高水牛的基因组预测能力,我们引入了一种新方法(pGBLUP),通过整合牛乳性状的 QTL 信息来预测六个水牛乳性状的基因组预测,以帮助提高水牛的预测性能。

结果

在模拟中,如果先验生物学信息(即已知的因果基因座)合适,pGBLUP 可以优于 BayesR 和 GBLUP;否则,它的表现略逊于 BayesR,但与 GBLUP 相当或优于 GBLUP。在真实数据中,当 EBV 作为响应变量时,牛乳性状 QTL 对应的水牛基因组区域的遗传力在四个水牛乳性状(FY270、MY270、PY270 和 PM)中得到了富集(富集倍数>1)。与传统 EBV 相比,DEBV 作为响应变量产生了更可靠的基因组预测,这一点已经被之前的研究证明。在这项研究中,GBLUP、BayesR 和 pGBLUP 这三种方法的性能没有太大差异,这可能是由于样本量有限、先验生物学信息不完全以及水牛的人工选择较少。

结论

据我们所知,这是首次将先验生物学信息应用于水牛基因组预测的研究。随着样本量的增加、高密度 SNP 芯片的使用和更精确的先验生物学信息的应用,水牛性状的基因组预测可以进一步提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f83/9408041/8990c9ba511d/genes-13-01430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验