Suppr超能文献

评估 RNA 结构图谱数据的信息含量对二级结构预测的作用。

Evaluation of the information content of RNA structure mapping data for secondary structure prediction.

机构信息

Biomedical Sciences Program, University at Albany, Albany, New York 12208, USA.

出版信息

RNA. 2010 Jun;16(6):1108-17. doi: 10.1261/rna.1988510. Epub 2010 Apr 22.

Abstract

Structure mapping experiments (using probes such as dimethyl sulfate [DMS], kethoxal, and T1 and V1 RNases) are used to determine the secondary structures of RNA molecules. The process is iterative, combining the results of several probes with constrained minimum free-energy calculations to produce a model of the structure. We aim to evaluate whether particular probes provide more structural information, and specifically, how noise in the data affects the predictions. Our approach involves generating "decoy" RNA structures (using the sFold Boltzmann sampling procedure) and evaluating whether we are able to identify the correct structure from this ensemble of structures. We show that with perfect information, we are always able to identify the optimal structure for five RNAs of known structure. We then collected orthogonal structure mapping data (DMS and RNase T1 digest) under several solution conditions using our high-throughput capillary automated footprinting analysis (CAFA) technique on two group I introns of known structure. Analysis of these data reveals the error rates in the data under optimal (low salt) and suboptimal solution conditions (high MgCl(2)). We show that despite these errors, our computational approach is less sensitive to experimental noise than traditional constraint-based structure prediction algorithms. Finally, we propose a novel approach for visualizing the interaction of chemical and enzymatic mapping data with RNA structure. We project the data onto the first two dimensions of a multidimensional scaling of the sFold-generated decoy structures. We are able to directly visualize the structural information content of structure mapping data and reconcile multiple data sets.

摘要

结构映射实验(使用二甲磺酸[DMS]、酮肟和 T1 和 V1 RNase 等探针)用于确定 RNA 分子的二级结构。该过程是迭代的,将几个探针的结果与受约束的最小自由能计算相结合,以产生结构模型。我们旨在评估特定的探针是否提供更多的结构信息,特别是数据中的噪声如何影响预测。我们的方法涉及生成“诱饵”RNA 结构(使用 sFold Boltzmann 采样程序),并评估我们是否能够从该结构集合中识别正确的结构。我们表明,在具有完美信息的情况下,我们总是能够从五个已知结构的 RNA 中识别出最佳结构。然后,我们使用我们的高通量毛细管自动足迹分析(CAFA)技术在两个已知结构的 I 组内含子上,在几种溶液条件下收集正交结构映射数据(DMS 和 RNase T1 消化)。对这些数据的分析揭示了在最佳(低盐)和次优(高 MgCl2)溶液条件下数据中的误差率。我们表明,尽管存在这些误差,我们的计算方法比传统的基于约束的结构预测算法对实验噪声的敏感性更低。最后,我们提出了一种新的方法来可视化化学和酶促映射数据与 RNA 结构的相互作用。我们将数据投影到 sFold 生成的诱饵结构多维标度的前两个维度上。我们能够直接可视化结构映射数据的结构信息含量,并协调多个数据集。

相似文献

3
Structure clustering features on the Sfold Web server.Sfold网络服务器上的结构聚类特征。
Bioinformatics. 2005 Oct 15;21(20):3926-8. doi: 10.1093/bioinformatics/bti632. Epub 2005 Aug 18.

引用本文的文献

2
How Parameters Influence SHAPE-Directed Predictions.参数如何影响形状导向预测。
Methods Mol Biol. 2024;2726:105-124. doi: 10.1007/978-1-0716-3519-3_5.
5
On the Problem of Reconstructing a Mixture of RNA Structures.重建 RNA 结构混合物的问题。
Bull Math Biol. 2020 Oct 7;82(10):133. doi: 10.1007/s11538-020-00804-0.
6
HiPR: High-throughput probabilistic RNA structure inference.HiPR:高通量概率RNA结构推断
Comput Struct Biotechnol J. 2020 Jun 8;18:1539-1547. doi: 10.1016/j.csbj.2020.06.004. eCollection 2020.
8
LncRNA secondary structure in the cardiovascular system.心血管系统中的长链非编码RNA二级结构
Noncoding RNA Res. 2017 Dec 12;2(3-4):137-142. doi: 10.1016/j.ncrna.2017.12.001. eCollection 2017 Sep.

本文引用的文献

2
VARNA: Interactive drawing and editing of the RNA secondary structure.VARNA:RNA 二级结构的交互式绘制和编辑。
Bioinformatics. 2009 Aug 1;25(15):1974-5. doi: 10.1093/bioinformatics/btp250. Epub 2009 Apr 27.
3
Accurate SHAPE-directed RNA structure determination.基于SHAPE的精确RNA结构测定。
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):97-102. doi: 10.1073/pnas.0806929106. Epub 2008 Dec 24.
9
References to commonly used techniques.对常用技术的引用。
Curr Protoc Nucleic Acid Chem. 2001 May;Appendix 3:Appendix 3A. doi: 10.1002/0471142700.nca03as00.
10
Into the post-HapMap era.进入后HapMap时代。
Adv Genet. 2008;60:727-42. doi: 10.1016/S0065-2660(07)00425-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验