Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr 2, 53113 Bonn, Germany.
ChemMedChem. 2010 Jun 7;5(6):847-58. doi: 10.1002/cmdc.201000064.
For series of compounds with activity against multiple targets, the resulting multi-target structure-activity relationships (mtSARs) are usually difficult to analyze. However, rationalizing mtSARs is of great importance for the development of compounds that are selective for one target over closely related ones. Herein we present a methodological framework for the study of mtSARs and identification of substitution sites in analogue series that are selectivity determinants. Active analogues are subjected to uniform R-group decomposition, compared on the basis of pharmacophore feature edit distances, and organized in previously reported tree-like structures that we adapted for mtSAR analysis. These data structures represent a substitution site hierarchy, capture potency variations, and reflect patterns of SAR discontinuity. Generating this data structure for multiple targets makes it possible to determine preference orders for chemical modifications to improve target selectivity. Accordingly, high emphasis is put on the derivation of simple rules to design substitutions that are likely to yield target-selective compounds. Furthermore, the analysis is applicable to identify both additive and non-additive effects on compound activity and selectivity as a consequence of multi-site substitutions.
对于具有针对多个靶点活性的一系列化合物,所得的多靶点结构-活性关系(mtSARs)通常难以分析。然而,合理化 mtSARs 对于开发对密切相关的靶点具有选择性的化合物非常重要。本文提出了一种用于 mtSAR 研究和鉴定类似物系列中选择性决定取代位点的方法框架。将活性类似物进行统一的 R 基团分解,基于药效团特征编辑距离进行比较,并组织在之前报道的树状结构中,我们对其进行了适应以进行 mtSAR 分析。这些数据结构代表了取代位点层次结构,捕获了效力变化,并反映了 SAR 不连续性的模式。为多个靶点生成此数据结构可以确定改善靶点选择性的化学修饰的优先顺序。因此,非常强调得出简单规则来设计可能产生靶点选择性化合物的取代。此外,该分析可用于识别由于多部位取代而对化合物活性和选择性的加性和非加性影响。