Suppr超能文献

通过自分泌酶产生溶血磷脂酸信号的生物学作用。

Biological roles of lysophosphatidic acid signaling through its production by autotaxin.

机构信息

Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.

出版信息

Biochimie. 2010 Jun;92(6):698-706. doi: 10.1016/j.biochi.2010.04.015. Epub 2010 Apr 22.

Abstract

Lysophosphatidic acid (LPA) exhibits a wide variety of biological functions as a bio-active lysophospholipid through G-protein-coupled receptors specific to LPA. Currently at least six LPA receptors are identified, named LPA(1) to LPA(6), while the existence of other LPA receptors has been suggested. From studies on knockout mice and hereditary diseases of these LPA receptors, it is now clear that LPA is involved in various biological processes including brain development and embryo implantation, as well as patho-physiological conditions including neuropathic pain and pulmonary and renal fibrosis. Unlike sphingosine 1-phosphate, a structurally similar bio-active lysophospholipid to LPA and produced intracellularly, LPA is produced by multiple extracellular degradative routes. A plasma enzyme called autotaxin (ATX) is responsible for the most of LPA production in our bodies. ATX converts lysophospholipids such as lysophosphatidylcholine to LPA by its lysophospholipase D activity. Recent studies on ATX have revealed new aspects of LPA. In this review, we highlight recent advances in our understanding of LPA functions and several aspects of ATX, including its activity, expression, structure, biochemical properties, the mechanism by which it stimulates cell motility and its pahto-physiological function through LPA production.

摘要

溶血磷脂酸(LPA)作为一种生物活性溶血磷脂,通过特异性的 G 蛋白偶联受体,表现出广泛的生物学功能。目前已鉴定出至少六种 LPA 受体,分别命名为 LPA(1)至 LPA(6),而其他 LPA 受体的存在也已被提出。通过对这些 LPA 受体的敲除小鼠和遗传性疾病的研究,现在已经清楚 LPA 参与了各种生物学过程,包括脑发育和胚胎着床,以及病理生理状况,如神经病理性疼痛和肺及肾纤维化。与结构相似的生物活性溶血磷脂 1-磷酸鞘氨醇(S1P)不同,LPA 是由多种细胞外降解途径产生的。一种叫做自分泌酶(ATX)的血浆酶负责我们体内大部分 LPA 的产生。ATX 通过其溶血磷脂酶 D 活性将溶血磷脂如溶血磷脂酰胆碱转化为 LPA。最近对 ATX 的研究揭示了 LPA 的新方面。在这篇综述中,我们强调了对 LPA 功能和 ATX 的几个方面的最新理解,包括其活性、表达、结构、生化特性、通过 LPA 产生刺激细胞运动的机制以及病理生理功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验