Biochemistry and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
J Biol Chem. 2010 Jul 2;285(27):20634-43. doi: 10.1074/jbc.M110.122614. Epub 2010 Apr 26.
Bacteria and chloroplasts require the ring-forming cytoskeletal protein FtsZ for division. Although bacteria accomplish division with a single FtsZ, plant chloroplasts require two FtsZ types for division, FtsZ1 and FtsZ2. These proteins colocalize to a mid-plastid Z ring, but their biochemical relationship is poorly understood. We investigated the in vitro behavior of recombinant FtsZ1 and FtsZ2 separately and together. Both proteins bind and hydrolyze GTP, although GTPase activities are low compared with the activity of Escherichia coli FtsZ. Each protein undergoes GTP-dependent assembly into thin protofilaments in the presence of calcium as a stabilizing agent, similar to bacterial FtsZ. In contrast, when mixed without calcium, FtsZ1 and FtsZ2 exhibit slightly elevated GTPase activity and coassembly into extensively bundled protofilaments. Coassembly is enhanced by FtsZ1, suggesting that it promotes lateral interactions between protofilaments. Experiments with GTPase-deficient mutants reveal that FtsZ1 and FtsZ2 form heteropolymers. Maximum coassembly occurs in reactions containing equimolar FtsZ1 and FtsZ2, but significant coassembly occurs at other stoichiometries. The FtsZ1:FtsZ2 ratio in coassembled structures mirrors their input ratio, suggesting plasticity in protofilament and/or bundle composition. This behavior contrasts with that of alpha- and beta-tubulin and the bacterial tubulin-like proteins BtubA and BtubB, which coassemble in a strict 1:1 stoichiometry. Our findings raise the possibility that plasticity in FtsZ filament composition and heteropolymerization-induced bundling could have been a driving force for the coevolution of FtsZ1 and FtsZ2 in the green lineage, perhaps arising from an enhanced capacity for the regulation of Z ring composition and activity in vivo.
细菌和叶绿体需要形成环的细胞骨架蛋白 FtsZ 进行分裂。虽然细菌通过单个 FtsZ 完成分裂,但植物叶绿体需要两种 FtsZ 类型(FtsZ1 和 FtsZ2)来进行分裂。这些蛋白质共定位到中质体 Z 环,但它们的生化关系知之甚少。我们分别研究了重组 FtsZ1 和 FtsZ2 以及它们的混合物的体外行为。两种蛋白质都结合并水解 GTP,尽管与大肠杆菌 FtsZ 的活性相比,GTP 酶活性较低。在钙离子作为稳定剂的存在下,每种蛋白质都经历 GTP 依赖性组装成薄原丝,类似于细菌 FtsZ。相比之下,当没有钙离子混合时,FtsZ1 和 FtsZ2 表现出略微升高的 GTP 酶活性,并共组装成广泛束状原丝。FtsZ1 增强了共组装,表明它促进了原丝之间的侧向相互作用。用 GTP 酶缺陷突变体进行的实验表明,FtsZ1 和 FtsZ2 形成异源多聚体。在含有等摩尔 FtsZ1 和 FtsZ2 的反应中发生最大共组装,但在其他化学计量比下也会发生显著共组装。共组装结构中的 FtsZ1:FtsZ2 比例反映了它们的输入比例,表明原丝和/或束组成具有可塑性。这种行为与 alpha-和 beta-微管蛋白以及细菌类似微管蛋白的蛋白 BtubA 和 BtubB 形成对比,它们以严格的 1:1 化学计量比共组装。我们的发现提出了一种可能性,即 FtsZ 丝组成的可塑性和异源多聚体诱导的束状化可能是绿色谱系中 FtsZ1 和 FtsZ2 共同进化的驱动力,这可能源于体内 Z 环组成和活性调节能力的增强。