Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
J Biol Chem. 2010 Jun 18;285(25):19051-9. doi: 10.1074/jbc.M110.123620. Epub 2010 Apr 26.
In this study, we aim to determine cellular mechanisms linking nutrient metabolism to the regulation of inflammation and insulin resistance. The nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 show striking similarities in nutrient sensing and regulation of metabolic pathways. We find that the expression, activity, and signaling of the major isoform alpha1AMPK in adipose tissue and macrophages are substantially down-regulated by inflammatory stimuli and in nutrient-rich conditions, such as exposure to lipopolysaccharide (LPS), free fatty acids (FFAs), and diet-induced obesity. Activating AMPK signaling in macrophages by 5-aminoimidazole-4-carboxamide-1-beta4-ribofuranoside or constitutively active alpha1AMPK (CA-alpha1) significantly inhibits; although inhibiting alpha1AMPK by short hairpin RNA knock-down or dominant-negative alpha1AMPK (DN-alpha1) increases LPS- and FFA-induced tumor necrosis factor alpha expression. Chromatin immunoprecipitation and luciferase reporter assays show that activation of AMPK by CA-alpha1 in macrophages significantly inhibits LPS- or FFA-induced NF-kappaB signaling. More importantly, in a macrophage-adipocyte co-culture system, we find that inactivation of macrophage AMPK signaling inhibits adipocyte insulin signaling and glucose uptake. Activation of AMPK by CA-alpha1 increases the SIRT1 activator NAD(+) content and SIRT1 expression in macrophages. Furthermore, alpha1AMPK activation mimics the effect of SIRT1 on deacetylating NF-kappaB, and the full capacity of AMPK to deacetylate NF-kappaB and inhibit its signaling requires SIRT1. In conclusion, AMPK negatively regulates lipid-induced inflammation, which acts through SIRT1, thereby contributing to the protection against obesity, inflammation, and insulin resistance. Our study defines a novel role for AMPK in bridging the signaling between nutrient metabolism and inflammation.
在这项研究中,我们旨在确定将营养代谢与炎症和胰岛素抵抗调节联系起来的细胞机制。营养传感器 AMP 激活的蛋白激酶(AMPK)和 SIRT1 在营养感应和代谢途径调节方面具有惊人的相似性。我们发现,脂肪组织和巨噬细胞中主要同工型 alpha1AMPK 的表达、活性和信号转导在炎症刺激下以及在营养丰富的条件下(如暴露于脂多糖(LPS)、游离脂肪酸(FFA)和饮食诱导的肥胖)显著下调。用 5-氨基咪唑-4-甲酰胺-1-β-D-核糖呋喃糖苷或组成型激活的 alpha1AMPK(CA-alpha1)激活巨噬细胞中的 AMPK 信号显著抑制;尽管通过短发夹 RNA 敲低或显性负性 alpha1AMPK(DN-alpha1)抑制 alpha1AMPK 会增加 LPS 和 FFA 诱导的肿瘤坏死因子-α表达。染色质免疫沉淀和荧光素酶报告基因检测表明,CA-alpha1 在巨噬细胞中激活 AMPK 可显著抑制 LPS 或 FFA 诱导的 NF-kappaB 信号。更重要的是,在巨噬细胞-脂肪细胞共培养系统中,我们发现巨噬细胞 AMPK 信号失活会抑制脂肪细胞胰岛素信号和葡萄糖摄取。CA-alpha1 激活 AMPK 可增加巨噬细胞中 SIRT1 激活剂 NAD(+)含量和 SIRT1 表达。此外,alpha1AMPK 激活模拟了 SIRT1 对 NF-kappaB 的去乙酰化作用,而 AMPK 去乙酰化 NF-kappaB 并抑制其信号的全部能力需要 SIRT1。总之,AMPK 负调节脂质诱导的炎症,其作用途径是通过 SIRT1,从而有助于预防肥胖、炎症和胰岛素抵抗。我们的研究定义了 AMPK 在连接营养代谢和炎症之间信号的新作用。