Suppr超能文献

β肾上腺素能受体刺激后β-arrestin 依赖性的 Ca(2+)/钙调蛋白激酶 II 的激活。

beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation.

机构信息

Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

J Cell Biol. 2010 May 3;189(3):573-87. doi: 10.1083/jcb.200911047. Epub 2010 Apr 26.

Abstract

Ca(2+)/calmodulin kinase II (CaMKII) plays an important role in cardiac contractility and the development of heart failure. Although stimulation of beta(1)-adrenergic receptors (ARs) leads to an increase in CaMKII activity, the molecular mechanism by which beta(1)-ARs activate CaMKII is not completely understood. In this study, we show the requirement for the beta(1)-AR regulatory protein beta-arrestin as a scaffold for both CaMKII and Epac (exchange protein directly activated by cAMP). Stimulation of beta(1)-ARs induces the formation of a beta-arrestin-CaMKII-Epac1 complex, allowing its recruitment to the plasma membrane, whereby interaction with cAMP leads to CaMKII activation. beta-Arrestin binding to the carboxyl-terminal tail of beta(1)-ARs promotes a conformational change within beta-arrestin that allows CaMKII and Epac to remain in a stable complex with the receptor. The essential role for beta-arrestin and identification of the molecular mechanism by which only beta(1)-ARs and not beta(2)-ARs activate CaMKII significantly advances our understanding of this important cellular pathway.

摘要

钙调蛋白激酶 II(CaMKII)在心肌收缩和心力衰竭的发展中起着重要作用。尽管β1-肾上腺素能受体(ARs)的刺激会导致 CaMKII 活性增加,但β1-AR 激活 CaMKII 的分子机制尚不完全清楚。在这项研究中,我们表明β1-AR 调节蛋白β-arrestin 作为 CaMKII 和 Epac(cAMP 直接激活的交换蛋白)的支架是必需的。β1-AR 的刺激诱导β-arrestin-CaMKII-Epac1 复合物的形成,允许其募集到质膜,从而与 cAMP 的相互作用导致 CaMKII 的激活。β-arrestin 与β1-AR 的羧基末端尾巴的结合促进β-arrestin 内的构象变化,使 CaMKII 和 Epac 能够与受体保持稳定的复合物。β-arrestin 的重要作用以及仅β1-AR 而不是β2-AR 激活 CaMKII 的分子机制的鉴定,显著提高了我们对这一重要细胞途径的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3366/2867304/d9bb7791596b/JCB_200911047_GS_Fig1.jpg

相似文献

1
beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation.
J Cell Biol. 2010 May 3;189(3):573-87. doi: 10.1083/jcb.200911047. Epub 2010 Apr 26.
2
Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa.
Cardiovasc Res. 2014 Jul 1;103(1):168-77. doi: 10.1093/cvr/cvu120. Epub 2014 May 8.
3
GRK5 Controls SAP97-Dependent Cardiotoxic β Adrenergic Receptor-CaMKII Signaling in Heart Failure.
Circ Res. 2020 Aug 28;127(6):796-810. doi: 10.1161/CIRCRESAHA.119.316319. Epub 2020 Jun 8.
5
Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction.
Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1377-86. doi: 10.1152/ajpheart.00504.2009. Epub 2009 Jul 24.
6
β-Adrenergic induced SR Ca leak is mediated by an Epac-NOS pathway.
J Mol Cell Cardiol. 2017 Jul;108:8-16. doi: 10.1016/j.yjmcc.2017.04.005. Epub 2017 May 2.
8
beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
J Biol Chem. 2006 Jan 13;281(2):1261-73. doi: 10.1074/jbc.M506576200. Epub 2005 Nov 9.
9
Carvedilol reverses cardiac insufficiency in AKAP5 knockout mice by normalizing the activities of calcineurin and CaMKII.
Cardiovasc Res. 2014 Nov 1;104(2):270-9. doi: 10.1093/cvr/cvu209. Epub 2014 Sep 15.

引用本文的文献

2
Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions.
Physiol Rev. 2025 Apr 1;105(2):541-591. doi: 10.1152/physrev.00013.2024. Epub 2024 Aug 8.
3
Status of β-Adrenoceptor Signal Transduction System in Cardiac Hypertrophy and Heart Failure.
Rev Cardiovasc Med. 2023 Sep 21;24(9):264. doi: 10.31083/j.rcm2409264. eCollection 2023 Sep.
4
A Mitochondrial Basis for Heart Failure Progression.
Cardiovasc Drugs Ther. 2024 Dec;38(6):1161-1171. doi: 10.1007/s10557-024-07582-0. Epub 2024 Jun 15.
6
New Therapeutics for Heart Failure: Focusing on cGMP Signaling.
Int J Mol Sci. 2023 Aug 16;24(16):12866. doi: 10.3390/ijms241612866.
7
Pathophysiology and pharmacology of G protein-coupled receptors in the heart.
Cardiovasc Res. 2023 May 22;119(5):1117-1129. doi: 10.1093/cvr/cvac171.
10
Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors.
Cells. 2021 Sep 17;10(9):2456. doi: 10.3390/cells10092456.

本文引用的文献

1
Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction.
Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1377-86. doi: 10.1152/ajpheart.00504.2009. Epub 2009 Jul 24.
2
CaMKII and a failing strategy for growth in heart.
J Clin Invest. 2009 May;119(5):1082-5. doi: 10.1172/jci39262.
4
Direct spatial control of Epac1 by cyclic AMP.
Mol Cell Biol. 2009 May;29(10):2521-31. doi: 10.1128/MCB.01630-08. Epub 2009 Mar 9.
7
Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93. doi: 10.1073/pnas.0804246105. Epub 2008 Jul 11.
8
Arrestins as multi-functional signaling adaptors.
Handb Exp Pharmacol. 2008(186):15-37. doi: 10.1007/978-3-540-72843-6_2.
9
Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy.
Circ Res. 2008 Apr 25;102(8):959-65. doi: 10.1161/CIRCRESAHA.107.164947. Epub 2008 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验