Suppr超能文献

线粒体代谢和 ROS 生成对于 Kras 介导的肿瘤发生是必不可少的。

Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.

机构信息

Division of Pulmonary and Critical Care, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School Chicago, IL 60611, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93. doi: 10.1073/pnas.1003428107. Epub 2010 Apr 26.

Abstract

Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Q(o) site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.

摘要

奥托·瓦尔堡(Otto Warburg)关于癌症起源的理论假设,肿瘤细胞中线粒体氧化磷酸化存在缺陷,因此依赖高水平的有氧糖酵解作为主要的 ATP 来源,为细胞增殖提供燃料(瓦伯格效应)。这与正常细胞形成鲜明对比,正常细胞主要利用氧化磷酸化来生长和存活。在这里,我们报告葡萄糖代谢对于 Kras 诱导的非锚定依赖性生长的主要功能,即支持戊糖磷酸途径。糖酵解 ATP 的主要功能是在缺氧条件下支持生长。通过谷氨酰胺酶和丙氨酸氨基转移酶将谷氨酸转化为三羧酸循环中间产物α-酮戊二酸对于 Kras 诱导的非锚定依赖性生长是必不可少的。线粒体代谢允许产生活性氧(ROS),ROS 通过调节 ERK MAPK 信号通路对于 Kras 诱导的非锚定依赖性生长是必需的。我们表明,非锚定依赖性生长所需的 ROS 生成的主要来源是线粒体复合物 III 的 Q(o) 位点。此外,通过缺失线粒体转录因子 A(TFAM)基因破坏线粒体功能,可减少致癌性 Kras 驱动的肺癌小鼠模型中的肿瘤发生。这些结果表明,线粒体代谢和线粒体 ROS 的产生对于 Kras 诱导的细胞增殖和肿瘤发生是必不可少的。

相似文献

1
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93. doi: 10.1073/pnas.1003428107. Epub 2010 Apr 26.
2
The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
Cancer Lett. 2015 Jan 28;356(2 Pt A):156-64. doi: 10.1016/j.canlet.2014.04.001. Epub 2014 Apr 13.
4
Drp1 Promotes KRas-Driven Metabolic Changes to Drive Pancreatic Tumor Growth.
Cell Rep. 2019 Aug 13;28(7):1845-1859.e5. doi: 10.1016/j.celrep.2019.07.031.
5
KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth.
Nat Metab. 2020 Dec;2(12):1373-1381. doi: 10.1038/s42255-020-00315-1. Epub 2020 Nov 23.
6
MTH1 expression is required for effective transformation by oncogenic HRAS.
Oncotarget. 2015 May 10;6(13):11519-29. doi: 10.18632/oncotarget.3447.
7
Targeting metabolic reprogramming in KRAS-driven cancers.
Int J Clin Oncol. 2017 Aug;22(4):651-659. doi: 10.1007/s10147-017-1156-4. Epub 2017 Jun 24.
8
Bcl-x knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity.
Free Radic Biol Med. 2017 Nov;112:350-359. doi: 10.1016/j.freeradbiomed.2017.08.007. Epub 2017 Aug 12.
9
10
Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
Biochim Biophys Acta. 2014 Jan;1837(1):51-62. doi: 10.1016/j.bbabio.2013.07.008. Epub 2013 Jul 23.

引用本文的文献

1
Living on the Edge: ROS Homeostasis in Cancer Cells and Its Potential as a Therapeutic Target.
Antioxidants (Basel). 2025 Aug 16;14(8):1002. doi: 10.3390/antiox14081002.
2
Polyclonality and metabolic heterogeneity in a colorectal tumor model.
iScience. 2025 Jul 10;28(8):113090. doi: 10.1016/j.isci.2025.113090. eCollection 2025 Aug 15.
3
Respiration defects limit serine synthesis required for lung cancer growth and survival.
Nat Commun. 2025 Aug 15;16(1):7621. doi: 10.1038/s41467-025-62911-7.
4
ROS-dependent localization of glycolytic enzymes to mitochondria.
Redox Biol. 2025 Aug 12;86:103812. doi: 10.1016/j.redox.2025.103812.
5
The immunologic landscape of HRAS-mutant head and neck squamous-cell carcinoma.
ESMO Open. 2025 Aug 12;10(8):105538. doi: 10.1016/j.esmoop.2025.105538.
7
Mechanisms underlying low mutation rates in mammalian oocytes and preimplantation embryos.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf760.

本文引用的文献

1
Anchorage-independent cell growth signature identifies tumors with metastatic potential.
Oncogene. 2009 Aug 6;28(31):2796-805. doi: 10.1038/onc.2009.139. Epub 2009 Jun 1.
2
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
3
Tumor suppressors and cell metabolism: a recipe for cancer growth.
Genes Dev. 2009 Mar 1;23(5):537-48. doi: 10.1101/gad.1756509.
4
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.
Nature. 2009 Apr 9;458(7239):762-5. doi: 10.1038/nature07823. Epub 2009 Feb 15.
5
Hypoxia, HIF1 and glucose metabolism in the solid tumour.
Nat Rev Cancer. 2008 Sep;8(9):705-13. doi: 10.1038/nrc2468.
6
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7. doi: 10.1073/pnas.0810199105. Epub 2008 Nov 24.
7
8
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.
Cell Metab. 2008 Jan;7(1):11-20. doi: 10.1016/j.cmet.2007.10.002.
9
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50. doi: 10.1073/pnas.0709747104. Epub 2007 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验