Suppr超能文献

GC 偏倚基因转换的惊人健身后果:I. 突变负荷和近交衰退。

Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression.

机构信息

Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier 34095, France.

出版信息

Genetics. 2010 Jul;185(3):939-59. doi: 10.1534/genetics.110.116368. Epub 2010 Apr 26.

Abstract

GC-biased gene conversion (gBGC) is a recombination-associated process mimicking selection in favor of G and C alleles. It is increasingly recognized as a widespread force in shaping the genomic nucleotide landscape. In recombination hotspots, gBGC can lead to bursts of fixation of GC nucleotides and to accelerated nucleotide substitution rates. It was recently shown that these episodes of strong gBGC could give spurious signatures of adaptation and/or relaxed selection. There is also evidence that gBGC could drive the fixation of deleterious amino acid mutations in some primate genes. This raises the question of the potential fitness effects of gBGC. While gBGC has been metaphorically termed the "Achilles' heel" of our genome, we do not know whether interference between gBGC and selection merely has practical consequences for the analysis of sequence data or whether it has broader fundamental implications for individuals and populations. I developed a population genetics model to predict the consequences of gBGC on the mutation load and inbreeding depression. I also used estimates available for humans to quantitatively evaluate the fitness impact of gBGC. Surprising features emerged from this model: (i) Contrary to classical mutation load models, gBGC generates a fixation load independent of population size and could contribute to a significant part of the load; (ii) gBGC can maintain recessive deleterious mutations for a long time at intermediate frequency, in a similar way to overdominance, and these mutations generate high inbreeding depression, even if they are slightly deleterious; (iii) since mating systems affect both the selection efficacy and gBGC intensity, gBGC challenges classical predictions concerning the interaction between mating systems and deleterious mutations, and gBGC could constitute an additional cost of outcrossing; and (iv) if mutations are biased toward A and T alleles, very low gBGC levels can reduce the load. A robust prediction is that the gBGC level minimizing the load depends only on the mutational bias and population size. These surprising results suggest that gBGC may have nonnegligible fitness consequences and could play a significant role in the evolution of genetic systems. They also shed light on the evolution of gBGC itself.

摘要

GC 偏向性基因转换(gBGC)是一种类似于选择的重组相关过程,有利于 G 和 C 等位基因。它越来越被认为是塑造基因组核苷酸景观的广泛力量。在重组热点中,gBGC 可导致 GC 核苷酸的固定爆发和核苷酸替代率的加速。最近的研究表明,这些强烈的 gBGC 事件可能会产生适应性和/或选择放松的虚假特征。还有证据表明,gBGC 可以驱动一些灵长类基因中有害氨基酸突变的固定。这就提出了 gBGC 潜在适合度效应的问题。虽然 gBGC 已经被比喻为我们基因组的“阿喀琉斯之踵”,但我们不知道 gBGC 与选择之间的干扰是否仅仅对序列数据的分析具有实际意义,或者它是否对个体和种群具有更广泛的基本意义。我开发了一个种群遗传学模型来预测 gBGC 对突变负荷和近交衰退的影响。我还使用了人类的可用估计值来定量评估 gBGC 的适应度影响。这个模型产生了一些令人惊讶的特征:(i)与经典的突变负荷模型相反,gBGC 产生与种群大小无关的固定负荷,并且可以为负荷的很大一部分做出贡献;(ii)gBGC 可以在中等频率下长时间维持隐性有害突变,其方式类似于超显性,这些突变会产生很高的近交衰退,即使它们只是轻微有害;(iii)由于交配系统既影响选择效率又影响 gBGC 强度,因此 gBGC 挑战了关于交配系统和有害突变相互作用的经典预测,并且 gBGC 可能构成异交的额外成本;(iv)如果突变偏向于 A 和 T 等位基因,则非常低的 gBGC 水平可以减少负荷。一个强有力的预测是,使负荷最小化的 gBGC 水平仅取决于突变偏向和种群大小。这些令人惊讶的结果表明,gBGC 可能具有不可忽视的适合度后果,并可能在遗传系统的进化中发挥重要作用。它们还揭示了 gBGC 本身的进化。

相似文献

1
Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression.
Genetics. 2010 Jul;185(3):939-59. doi: 10.1534/genetics.110.116368. Epub 2010 Apr 26.
3
Surprising fitness consequences of GC-biased gene conversion. II. Heterosis.
Genetics. 2011 Jan;187(1):217-27. doi: 10.1534/genetics.110.120808. Epub 2010 Oct 18.
4
A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes.
PLoS Genet. 2013;9(8):e1003684. doi: 10.1371/journal.pgen.1003684. Epub 2013 Aug 15.
8
Base-Biased Evolution of Disease-Associated Mutations in the Human Genome.
Hum Mutat. 2016 Nov;37(11):1209-1214. doi: 10.1002/humu.23065. Epub 2016 Aug 31.
9
The role of GC-biased gene conversion in shaping the fastest evolving regions of the human genome.
Mol Biol Evol. 2012 Mar;29(3):1047-57. doi: 10.1093/molbev/msr279. Epub 2011 Nov 10.

引用本文的文献

2
Evolution of GC-biased gene conversion by natural selection.
Genetics. 2025 Aug 6;230(4). doi: 10.1093/genetics/iyaf111.
3
Rate of de novo mutations in the three-spined stickleback.
Heredity (Edinb). 2025 Jun 12. doi: 10.1038/s41437-025-00767-9.
4
6
High prevalence of PRDM9-independent recombination hotspots in placental mammals.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2401973121. doi: 10.1073/pnas.2401973121. Epub 2024 May 29.
8
The role of recombination dynamics in shaping signatures of direct and indirect selection across the flycatcher genome.
Proc Biol Sci. 2024 Jan 31;291(2015):20232382. doi: 10.1098/rspb.2023.2382. Epub 2024 Jan 17.
9
GC-biased gene conversion drives accelerated evolution of ultraconserved elements in mammalian and avian genomes.
Genome Res. 2023 Oct;33(10):1673-1689. doi: 10.1101/gr.277784.123. Epub 2023 Oct 26.
10
Allorecognition genes drive reproductive isolation in Podospora anserina.
Nat Ecol Evol. 2022 Jul;6(7):910-923. doi: 10.1038/s41559-022-01734-x. Epub 2022 May 12.

本文引用的文献

2
RISK OF POPULATION EXTINCTION FROM FIXATION OF NEW DELETERIOUS MUTATIONS.
Evolution. 1994 Oct;48(5):1460-1469. doi: 10.1111/j.1558-5646.1994.tb02188.x.
3
THE EVOLUTION OF SELF-FERTILIZATION AND INBREEDING DEPRESSION IN PLANTS. I. GENETIC MODELS.
Evolution. 1985 Jan;39(1):24-40. doi: 10.1111/j.1558-5646.1985.tb04077.x.
4
The genetics of inbreeding depression.
Nat Rev Genet. 2009 Nov;10(11):783-96. doi: 10.1038/nrg2664.
6
Biased gene conversion and the evolution of mammalian genomic landscapes.
Annu Rev Genomics Hum Genet. 2009;10:285-311. doi: 10.1146/annurev-genom-082908-150001.
7
GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome.
Genetics. 2009 Sep;183(1):31-8. doi: 10.1534/genetics.109.105049. Epub 2009 Jun 22.
8
Evolutionary rates in partially self-fertilizing species.
Am Nat. 1992 Jul;140(1):126-48. doi: 10.1086/285406.
9
Recombinational landscape and population genomics of Caenorhabditis elegans.
PLoS Genet. 2009 Mar;5(3):e1000419. doi: 10.1371/journal.pgen.1000419. Epub 2009 Mar 13.
10
Comment on "Human-specific gain of function in a developmental enhancer".
Science. 2009 Feb 6;323(5915):714; author reply 714. doi: 10.1126/science.1165848.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验