Suppr超能文献

大豆核型荧光原位杂交系统。

A fluorescence in situ hybridization system for karyotyping soybean.

机构信息

Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Genetics. 2010 Jul;185(3):727-44. doi: 10.1534/genetics.109.113753. Epub 2010 Apr 26.

Abstract

The development of a universal soybean (Glycine max [L.] Merr.) cytogenetic map that associates classical genetic linkage groups, molecular linkage groups, and a sequence-based physical map with the karyotype has been impeded due to the soybean chromosomes themselves, which are small and morphologically homogeneous. To overcome this obstacle, we screened soybean repetitive DNA to develop a cocktail of fluorescent in situ hybridization (FISH) probes that could differentially label mitotic chromosomes in root tip preparations. We used genetically anchored BAC clones both to identify individual chromosomes in metaphase spreads and to complete a FISH-based karyotyping cocktail that permitted simultaneous identification of all 20 chromosome pairs. We applied these karyotyping tools to wild soybean, G. soja Sieb. and Zucc., which represents a large gene pool of potentially agronomically valuable traits. These studies led to the identification and characterization of a reciprocal chromosome translocation between chromosomes 11 and 13 in two accessions of wild soybean. The data confirm that this translocation is widespread in G. soja accessions and likely accounts for the semi-sterility found in some G. soja by G. max crosses.

摘要

由于大豆染色体本身较小且形态上均一,因此,开发一种将经典遗传连锁群、分子连锁群和基于序列的物理图谱与核型相关联的通用大豆(Glycine max [L.] Merr.)细胞遗传学图谱的工作受到了阻碍。为了克服这一障碍,我们筛选了大豆重复 DNA,开发了一套荧光原位杂交(FISH)探针混合物,可对根尖制备物中的有丝分裂染色体进行差异标记。我们使用遗传锚定的 BAC 克隆,不仅可以在中期分裂图中识别单个染色体,还可以完成基于 FISH 的核型分析混合物的构建,从而可以同时识别所有 20 对染色体。我们将这些核型分析工具应用于野生大豆(G. soja Sieb. 和 Zucc.),它代表了具有潜在农艺价值性状的大量基因库。这些研究导致鉴定和表征了野生大豆两个品系中第 11 和第 13 号染色体之间的相互易位。这些数据证实,这种易位在野生大豆品系中广泛存在,可能是大豆与大豆杂交中某些大豆半不育的原因。

相似文献

1
A fluorescence in situ hybridization system for karyotyping soybean.
Genetics. 2010 Jul;185(3):727-44. doi: 10.1534/genetics.109.113753. Epub 2010 Apr 26.
3
Integrated karyotyping of sorghum by in situ hybridization of landed BACs.
Genome. 2002 Apr;45(2):402-12. doi: 10.1139/g01-141.
9
Fluorescence in situ hybridization-based karyotyping of soybean translocation lines.
G3 (Bethesda). 2011 Jul;1(2):117-29. doi: 10.1534/g3.111.000034. Epub 2011 Jul 1.
10
Molecular cytogenetic characterization of the Antirrhinum majus genome.
Genetics. 2005 Jan;169(1):325-35. doi: 10.1534/genetics.104.031146. Epub 2004 Sep 15.

引用本文的文献

1
A telomere-to-telomere genome of wild soybean with resistance to soybean cyst nematode X12.
Sci Data. 2025 Aug 13;12(1):1412. doi: 10.1038/s41597-025-05741-y.
2
Preparing high-quality chromosome spreads from Crocus species for karyotyping and FISH.
Mol Cytogenet. 2025 Feb 20;18(1):2. doi: 10.1186/s13039-025-00706-7.
3
Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor.
Life Sci Alliance. 2024 Oct 1;7(12). doi: 10.26508/lsa.202402802. Print 2024 Dec.
4
Unlocking plant genetics with telomere-to-telomere genome assemblies.
Nat Genet. 2024 Sep;56(9):1788-1799. doi: 10.1038/s41588-024-01830-7. Epub 2024 Jul 24.
5
MutL homolog 1 participates in interference-sensitive meiotic crossover formation in soybean.
Plant Physiol. 2024 Jul 31;195(4):2579-2595. doi: 10.1093/plphys/kiae165.
6
Chromosome and Genome Diversity in the Genus (Fabaceae).
Plants (Basel). 2021 Nov 19;10(11):2518. doi: 10.3390/plants10112518.
7
Genome assembly of the popular Korean soybean cultivar Hwangkeum.
G3 (Bethesda). 2021 Sep 27;11(10). doi: 10.1093/g3journal/jkab272.
8
Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz).
J Appl Genet. 2021 May;62(2):199-205. doi: 10.1007/s13353-020-00600-5. Epub 2021 Jan 7.
10
Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution.
Genes (Basel). 2019 Apr 1;10(4):259. doi: 10.3390/genes10040259.

本文引用的文献

3
A major satellite DNA of soybean is a 92-base pairs tandem repeat.
Theor Appl Genet. 1995 Apr;90(5):621-6. doi: 10.1007/BF00222125.
4
Sequencing breakthroughs for genomic ecology and evolutionary biology.
Mol Ecol Resour. 2008 Jan;8(1):3-17. doi: 10.1111/j.1471-8286.2007.02019.x.
5
SoyTEdb: a comprehensive database of transposable elements in the soybean genome.
BMC Genomics. 2010 Feb 17;11:113. doi: 10.1186/1471-2164-11-113.
7
Genome sequence of the palaeopolyploid soybean.
Nature. 2010 Jan 14;463(7278):178-83. doi: 10.1038/nature08670.
8
Molecular and chromosomal evidence for allopolyploidy in soybean.
Plant Physiol. 2009 Nov;151(3):1167-74. doi: 10.1104/pp.109.137935. Epub 2009 Jul 15.
9
Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463.
J Hered. 2009 Nov-Dec;100(6):798-801. doi: 10.1093/jhered/esp027. Epub 2009 May 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验