Suppr超能文献

希瓦氏菌 22 中砷酸盐氧化酶的特性:酶的特性及其与可溶性细胞色素的相互作用。

Arsenite oxidase from Ralstonia sp. 22: characterization of the enzyme and its interaction with soluble cytochromes.

机构信息

Laboratoire de Bioénergétique et Ingénierie des Protéines UPR 9036, IFR88, CNRS, F-13402 Marseille Cedex 20, France.

出版信息

J Biol Chem. 2010 Jul 2;285(27):20433-41. doi: 10.1074/jbc.M110.113761. Epub 2010 Apr 26.

Abstract

We characterized the aro arsenite oxidation system in the novel strain Ralstonia sp. 22, a beta-proteobacterium isolated from soil samples of the Salsigne mine in southern France. The inducible aro system consists of a heterodimeric membrane-associated enzyme reacting with a dedicated soluble cytochrome c(554). Our biochemical results suggest that the weak association of the enzyme to the membrane probably arises from a still unknown interaction partner. Analysis of the phylogeny of the aro gene cluster revealed that it results from a lateral gene transfer from a species closely related to Achromobacter sp. SY8. This constitutes the first clear cut case of such a transfer in the Aro phylogeny. The biochemical study of the enzyme demonstrates that it can accommodate in vitro various cytochromes, two of which, c(552) and c(554,) are from the parent species. Cytochrome c(552) belongs to the sox and not the aro system. Kinetic studies furthermore established that sulfite and sulfide, substrates of the sox system, are both inhibitors of Aro activity. These results reinforce the idea that sulfur and arsenic metabolism are linked.

摘要

我们对来自法国南部萨尔西涅矿土壤样本的新型β-变形菌罗尔斯通氏菌(Ralstonia sp. 22)中的新型砷酸盐氧化系统进行了研究。诱导型 aro 系统由一种与专用可溶性细胞色素 c(554)反应的异二聚体膜相关酶组成。我们的生化结果表明,酶与膜的弱结合可能源于一个未知的相互作用伙伴。aro 基因簇的系统发育分析表明,它来自于与阿克洛莫obacter sp. SY8 密切相关的物种的横向基因转移。这是 Aro 系统发育中首次明确的此类转移案例。对酶的生化研究表明,它可以在体外容纳各种细胞色素,其中两种,c(552)和 c(554),来自亲代物种。细胞色素 c(552)属于 sox 系统而不是 aro 系统。动力学研究进一步证实,亚硫酸盐和硫化物是 sox 系统的底物,也是 Aro 活性的抑制剂。这些结果强化了硫和砷代谢之间存在联系的观点。

相似文献

1
Arsenite oxidase from Ralstonia sp. 22: characterization of the enzyme and its interaction with soluble cytochromes.
J Biol Chem. 2010 Jul 2;285(27):20433-41. doi: 10.1074/jbc.M110.113761. Epub 2010 Apr 26.
2
The small subunit AroB of arsenite oxidase: lessons on the [2Fe-2S] Rieske protein superfamily.
J Biol Chem. 2010 Jul 2;285(27):20442-51. doi: 10.1074/jbc.M110.113811. Epub 2010 Apr 26.
5
Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
Res Microbiol. 2015 Apr;166(3):205-14. doi: 10.1016/j.resmic.2015.02.010. Epub 2015 Mar 6.
7
Characterization of a cytochrome a1 that functions as a ubiquinol oxidase in Acetobacter aceti.
J Bacteriol. 1993 Jul;175(14):4307-14. doi: 10.1128/jb.175.14.4307-4314.1993.
8
Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
Appl Microbiol Biotechnol. 2009 Jun;83(4):715-25. doi: 10.1007/s00253-009-1929-4. Epub 2009 Mar 13.
9
Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24.
Appl Environ Microbiol. 2009 Aug;75(15):5141-7. doi: 10.1128/AEM.02798-08. Epub 2009 Jun 12.
10
Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil.
Biodegradation. 2012 Nov;23(6):803-12. doi: 10.1007/s10532-012-9567-4. Epub 2012 Jul 4.

引用本文的文献

2
Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile.
Microorganisms. 2021 Feb 25;9(3):483. doi: 10.3390/microorganisms9030483.
3
Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake.
Microorganisms. 2020 Sep 4;8(9):1350. doi: 10.3390/microorganisms8091350.
4
Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c.
Biochim Biophys Acta Bioenerg. 2017 Oct;1858(10):865-872. doi: 10.1016/j.bbabio.2017.08.003. Epub 2017 Aug 8.
5
Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.
PLoS One. 2016 Jan 13;11(1):e0146331. doi: 10.1371/journal.pone.0146331. eCollection 2016.
6
The mononuclear molybdenum enzymes.
Chem Rev. 2014 Apr 9;114(7):3963-4038. doi: 10.1021/cr400443z. Epub 2014 Jan 28.
8
The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster.
PLoS One. 2013 Aug 30;8(8):e72535. doi: 10.1371/journal.pone.0072535. eCollection 2013.

本文引用的文献

1
The small subunit AroB of arsenite oxidase: lessons on the [2Fe-2S] Rieske protein superfamily.
J Biol Chem. 2010 Jul 2;285(27):20442-51. doi: 10.1074/jbc.M110.113811. Epub 2010 Apr 26.
3
Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24.
Appl Environ Microbiol. 2009 Aug;75(15):5141-7. doi: 10.1128/AEM.02798-08. Epub 2009 Jun 12.
5
Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44.
Appl Microbiol Biotechnol. 2009 Jun;83(4):715-25. doi: 10.1007/s00253-009-1929-4. Epub 2009 Mar 13.
6
Purification and characterization of arsenite oxidase from Arthrobacter sp.
Biometals. 2009 Oct;22(5):711-21. doi: 10.1007/s10534-009-9215-6. Epub 2009 Feb 12.
8
Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones river, Northern Chile.
Bull Environ Contam Toxicol. 2009 May;82(5):593-6. doi: 10.1007/s00128-009-9659-y. Epub 2009 Feb 4.
9
Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures.
FEMS Microbiol Ecol. 2009 Apr;68(1):72-85. doi: 10.1111/j.1574-6941.2009.00653.x. Epub 2009 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验