Suppr超能文献

通过亚砷酸盐氧化酶的电子转移:了解 Rieske 与细胞色素 c 的相互作用。

Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c.

机构信息

Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom.

Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA.

出版信息

Biochim Biophys Acta Bioenerg. 2017 Oct;1858(10):865-872. doi: 10.1016/j.bbabio.2017.08.003. Epub 2017 Aug 8.

Abstract

Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.

摘要

砷是一种广泛分布的环境毒素,其存在于饮用水中对全球超过 1.4 亿人构成威胁。来自各种细菌的呼吸酶亚砷酸盐氧化酶催化亚砷酸盐氧化为砷酸盐,目前正被开发为亚砷酸盐的生物传感器。根瘤菌属 NT-26(变形菌门的一员)的亚砷酸盐氧化酶是一种由一个大亚基(AioA)和一个小亚基(AioB)组成的杂四聚体,大亚基含有钼中心和 3Fe-4S 簇,小亚基含有 Rieske 2Fe-2S 簇。使用停流光谱法和等温滴定量热法(ITC)来更好地理解酶中氧化还原活性中心的电子转移,这对生物传感器的开发至关重要。结果表明,砷酸盐在活性部位的氧化速度极快,速率>4000s,而电子受体的还原是限速步骤。AioB-F108A 突变导致与人工电子受体 DCPIP 的活性增加,与细胞色素 c 的活性降低,ITC 表明后者不是由于对蛋白质-蛋白质相互作用的影响,而是由于对电子转移的影响。这些结果进一步支持了 AioB F108 对于 Rieske 亚基和细胞色素 c 之间的电子转移很重要,而β变形菌门的砷酸盐氧化酶中不存在该残基可能解释了这些酶不能使用这种电子受体的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f476/5574378/1b9fade64324/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验