Suppr超能文献

基于多种半监督假设的正则化提升的半监督学习。

Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

机构信息

School of Computer Science, The University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL, UK.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Jan;33(1):129-43. doi: 10.1109/TPAMI.2010.92.

Abstract

Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

摘要

半监督学习关注的是在有标记和无标记数据存在的情况下进行学习的问题。已经有几种提升算法被扩展到了半监督学习中,并采用了各种策略。然而,据我们所知,它们都没有将三个半监督假设,即平滑性、簇和流形假设,在提升学习过程中一起考虑进去。在本文中,我们提出了一种新的代价函数,它由标记数据上的边界代价和无标记数据上的正则化惩罚项组成,基于三个基本的半监督假设。因此,通过贪婪但分阶段的函数优化过程来最小化我们提出的代价函数,得到了一个通用的半监督学习提升框架。大量实验表明,与包括新开发的提升算法在内的最先进的半监督学习算法相比,我们的算法在基准和真实世界的分类任务中产生了更优的结果。最后,我们讨论了相关问题,并将我们的算法与以前的工作联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验