Suppr超能文献

半监督和无监督极限学习机。

Semi-supervised and unsupervised extreme learning machines.

出版信息

IEEE Trans Cybern. 2014 Dec;44(12):2405-17. doi: 10.1109/TCYB.2014.2307349.

Abstract

Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

摘要

极限学习机(ELM)已被证明是一种用于模式分类和回归的高效、有效的学习机制。然而,ELM 主要应用于监督学习问题。只有少数现有的研究论文使用 ELM 来探索无标签数据。在本文中,我们基于流形正则化将 ELM 扩展到半监督和无监督任务中,从而大大扩展了 ELM 的适用性。所提出算法的主要优点如下:1)半监督 ELM(SS-ELM)和无监督 ELM(US-ELM)都具有 ELM 的学习能力和计算效率;2)这两种算法都可以自然地处理多类分类或多聚类;3)这两种算法都是归纳式的,可以在测试时直接处理未见的数据。此外,本文还表明,所有的监督、半监督和无监督 ELM 实际上都可以置于一个统一的框架中。这为理解随机特征映射的机制提供了新的视角,随机特征映射是 ELM 理论的关键概念。在广泛的数据集中的实证研究表明,所提出的算法在准确性和效率方面与最先进的半监督或无监督学习算法具有竞争力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验