Wu Meng, Sun Jun, Zhou Jun, Xue Gengjian
Institute of Image Communication and Information Processing, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
J Opt Soc Am A Opt Image Sci Vis. 2010 Oct 1;27(10):2097-105. doi: 10.1364/JOSAA.27.002097.
Considering that no single algorithm available is universal in color constancy, we propose an effective combination approach using a texture-based matching strategy and a local regression with prior-knowledge regularization. To represent the images, we construct a texture pyramid using an integrated Weibull distribution. Then we define an image similarity measure to search for the K most similar images of the test image. To combine the single algorithms, we integrate prior knowledge into a regularized local regression in a decorrelated color space. Regression weights are obtained on these similar images, and the regularization is implemented by the frequency ratio of the best single algorithm. Experiments on two real world datasets show our approach outperforms the state-of-the-art single algorithms and popular combination approaches with a performance increase of at least 29% compared to the best-performing single algorithm w.r.t median angular error.
考虑到现有的单一算法在颜色恒常性方面并非通用,我们提出了一种有效的组合方法,该方法使用基于纹理的匹配策略和带有先验知识正则化的局部回归。为了表示图像,我们使用综合威布尔分布构建纹理金字塔。然后我们定义一种图像相似性度量来搜索测试图像的K个最相似图像。为了组合单一算法,我们将先验知识集成到去相关颜色空间中的正则化局部回归中。在这些相似图像上获得回归权重,并通过最佳单一算法的频率比来实现正则化。在两个真实世界数据集上的实验表明,我们的方法优于当前最先进的单一算法和流行的组合方法,与性能最佳的单一算法相比,在中值角度误差方面性能提升至少29%。