Suppr超能文献

二聚体跨膜结构域的结构解析。

Structure elucidation of dimeric transmembrane domains of bitopic proteins.

机构信息

Division of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.

出版信息

Cell Adh Migr. 2010 Apr-Jun;4(2):284-98. doi: 10.4161/cam.4.2.11930. Epub 2010 May 1.

Abstract

The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

摘要

跨膜螺旋之间的相互作用非常重要,因为它直接决定了膜蛋白的生物活性。破坏或增强这种相互作用会导致许多与人体不同组织功能障碍相关的疾病。一种研究较多的膜蛋白形式是双跨膜蛋白,它是一种含有两个侧向关联的跨膜螺旋的二聚体。建立结构-功能关系以及针对膜蛋白的新型药物的合理设计需要关于此类对象的精确结构信息。目前,为了研究这类跨膜螺旋二聚体的空间结构和内部动力学,已经开发了几种策略,主要基于 NMR 光谱学、光学光谱学、蛋白质工程和分子建模的组合。这些方法已成功应用于几种双跨膜蛋白的同型和异型跨膜片段,这些片段在人体正常和病理条件下发挥着重要作用。

相似文献

1
Structure elucidation of dimeric transmembrane domains of bitopic proteins.
Cell Adh Migr. 2010 Apr-Jun;4(2):284-98. doi: 10.4161/cam.4.2.11930. Epub 2010 May 1.
2
Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR.
Biochim Biophys Acta. 2012 Sep;1818(9):2158-70. doi: 10.1016/j.bbamem.2012.05.001. Epub 2012 May 8.
3
Structural aspects of oligomerization taking place between the transmembrane alpha-helices of bitopic membrane proteins.
Biochim Biophys Acta. 2002 Oct 11;1565(2):347-63. doi: 10.1016/s0005-2736(02)00580-1.
4
Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment.
Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):561-576. doi: 10.1016/j.bbamem.2016.10.024. Epub 2016 Nov 22.
5
TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers.
J Comput Aided Mol Des. 2017 Sep;31(9):855-865. doi: 10.1007/s10822-017-0047-0. Epub 2017 Sep 1.
6
How important are transmembrane helices of bitopic membrane proteins?
Biochim Biophys Acta. 2007 Mar;1768(3):387-92. doi: 10.1016/j.bbamem.2006.11.019. Epub 2006 Dec 8.
7
Probing the effect of membrane contents on transmembrane protein-protein interaction using solution NMR and computer simulations.
Biochim Biophys Acta Biomembr. 2018 Dec;1860(12):2486-2498. doi: 10.1016/j.bbamem.2018.09.013. Epub 2018 Sep 18.
8
NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):164-72. doi: 10.1016/j.bbamem.2013.08.021. Epub 2013 Sep 10.

引用本文的文献

3
Inconspicuous Yet Indispensable: The Coronavirus Spike Transmembrane Domain.
Int J Mol Sci. 2023 Nov 16;24(22):16421. doi: 10.3390/ijms242216421.
4
Saturation Mutagenesis of the Transmembrane Region of HokC in Reveals Its High Tolerance to Mutations.
Int J Mol Sci. 2021 Sep 26;22(19):10359. doi: 10.3390/ijms221910359.
5
Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors.
Int J Mol Sci. 2021 Aug 10;22(16):8593. doi: 10.3390/ijms22168593.
6
Death Receptor 5 Activation Is Energetically Coupled to Opening of the Transmembrane Domain Dimer.
Biophys J. 2017 Jul 25;113(2):381-392. doi: 10.1016/j.bpj.2017.05.038.
7
Peripheral membrane associations of matrix metalloproteinases.
Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt A):1964-1973. doi: 10.1016/j.bbamcr.2017.04.013. Epub 2017 Apr 23.

本文引用的文献

1
Helix Interactions in Membranes:  Lessons from Unrestrained Monte Carlo Simulations.
J Chem Theory Comput. 2005 Nov;1(6):1252-64. doi: 10.1021/ct0501250.
5
Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins.
Prog Nucl Magn Reson Spectrosc. 2009 Nov 1;55(4):335-360. doi: 10.1016/j.pnmrs.2009.07.002.
6
Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
Acc Chem Res. 2010 Mar 16;43(3):388-96. doi: 10.1021/ar900211k.
7
Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.
Methods Enzymol. 2009;464:211-31. doi: 10.1016/S0076-6879(09)64011-8.
8
Alpha-helical transmembrane peptides: a "divide and conquer" approach to membrane proteins.
Chem Phys Lipids. 2010 Jan;163(1):1-26. doi: 10.1016/j.chemphyslip.2009.07.009.
9
Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.
Cell. 2009 Jun 26;137(7):1293-307. doi: 10.1016/j.cell.2009.04.025.
10
Interaction and conformational dynamics of membrane-spanning protein helices.
Protein Sci. 2009 Jul;18(7):1343-58. doi: 10.1002/pro.154.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验