Kuznetsov A S, Volynsky P E, Efremov R G
M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia.
M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia ; Higher School of Economics, Myasnitskaya Str., 20, 101000, Moscow, Russia ; Joint Supercomputer Center of Russian Academy of Sciences, Leninskiy Pr., 32a, 119991, Moscow, Russia.
Acta Naturae. 2015 Oct-Dec;7(4):122-7.
An efficient computational approach is developed to quantify the free energy of a spontaneous association of the α-helices of proteins in the membrane environment. The approach is based on the numerical decomposition of the free energy profiles of the transmembrane (TM) helices into components corresponding to protein-protein, protein-lipid, and protein-water interactions. The method was tested for the TM segments of human glycophorin A (GpA) and two mutant forms, Gly83Ala and Thr87Val. It was shown that lipids make a significant negative contribution to the free energy of dimerization, while amino acid residues forming the interface of the helix-helix contact may be unfavorable in terms of free energy. The detailed balance between different energy contributions is highly dependent on the amino acid sequence of the TM protein segment. The results show the dominant role of the environment in the interaction of membrane proteins that is changing our notion of the driving force behind the spontaneous association of TM α-helices. Adequate estimation of the contribution of the water-lipid environment thus becomes an extremely urgent task for a rational design of new molecules targeting bitopic membrane proteins, including receptor tyrosine kinases.
开发了一种有效的计算方法来量化膜环境中蛋白质α-螺旋自发缔合的自由能。该方法基于将跨膜(TM)螺旋的自由能分布数值分解为对应于蛋白质-蛋白质、蛋白质-脂质和蛋白质-水相互作用的组分。该方法针对人血型糖蛋白A(GpA)的TM片段以及两种突变形式Gly83Ala和Thr87Val进行了测试。结果表明,脂质对二聚化自由能有显著的负贡献,而形成螺旋-螺旋接触界面的氨基酸残基在自由能方面可能是不利的。不同能量贡献之间的详细平衡高度依赖于TM蛋白片段的氨基酸序列。结果表明环境在膜蛋白相互作用中起主导作用,这正在改变我们对TMα-螺旋自发缔合背后驱动力的认识。因此,对于合理设计靶向双位膜蛋白(包括受体酪氨酸激酶)的新分子而言,充分估计水-脂质环境的贡献成为一项极其紧迫的任务。