Petrović Aleksandar, Smith Stephen M, Menke Ricarda A, Jenkinson Mark
Centre for Functional MRI of the Brain (FMRIB), University of Oxford.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):705-12. doi: 10.1007/978-3-642-04268-3_87.
Registration of brain structures should bring anatomically equivalent areas into correspondence which is usually done using information from structural MRI modalities. Correspondence can be improved by using other image modalities that provide complementary data. In this paper we propose and evaluate two novel surface registration algorithms which improve within-surface correspondence in brain structures. Both approaches use a white-matter tract similarity function (derived from probabilistic tractography) to match areas of similar connectivity patterns. The two methods differ in the way the deformation field is calculated and in how the multi-scale registration framework is implemented. We validated both algorithms using artificial and real image examples, in both cases showing high registration consistency and the ability to find differences in thalamic sub-structures between Alzheimer's disease and control subjects. The results suggest differences in thalamic connectivity predominantly in the medial dorsal parts of the left thalamus.
脑结构的配准应使解剖学上等效的区域相互对应,这通常是利用来自结构磁共振成像模态的信息来完成的。通过使用提供补充数据的其他图像模态,可以改善对应关系。在本文中,我们提出并评估了两种新颖的表面配准算法,它们可改善脑结构内表面的对应关系。这两种方法都使用白质束相似性函数(源自概率纤维束成像)来匹配具有相似连接模式的区域。这两种方法在计算变形场的方式以及多尺度配准框架的实现方式上有所不同。我们使用人工和真实图像示例对这两种算法进行了验证,在这两种情况下均显示出高配准一致性以及发现阿尔茨海默病患者与对照受试者之间丘脑亚结构差异的能力。结果表明,丘脑连接性的差异主要存在于左丘脑的内侧背侧部分。