Schmidt-Richberg Alexander, Ehrhardt Jan, Werner Rene, Handels Heinz
Department of Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):755-62. doi: 10.1007/978-3-642-04268-3_93.
The computation of accurate motion fields is a crucial aspect in 4D medical imaging. It is usually done using a non-linear registration without further modeling of physiological motion properties. However, a globally homogeneous smoothing (regularization) of the motion field during the registration process can contradict the characteristics of motion dynamics. This is particularly the case when two organs slip along each other which leads to discontinuities in the motion field. In this paper, we present a diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while ensuring smooth motion fields in the inside and preventing gaps to arise in the field. We evaluate our model focusing on the estimation of respiratory lung motion. By accounting for the discontinuous motion of visceral and parietal pleurae, we are able to show a significant increase of registration accuracy with respect to the target registration error (TRE).
精确运动场的计算是4D医学成像中的一个关键方面。它通常使用非线性配准来完成,而无需对生理运动特性进行进一步建模。然而,在配准过程中对运动场进行全局均匀平滑(正则化)可能与运动动力学的特征相矛盾。当两个器官相互滑动导致运动场出现不连续时,情况尤其如此。在本文中,我们提出了一种基于扩散的模型,用于在图像配准中纳入生理知识。通过解耦法向和平行于表面方向的平滑,我们能够估计器官边界处的滑动运动,同时确保内部运动场的平滑,并防止场中出现间隙。我们专注于评估我们的模型对呼吸肺运动的估计。通过考虑脏层和壁层胸膜的不连续运动,我们能够证明相对于目标配准误差(TRE),配准精度有显著提高。